ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvfld Unicode version

Theorem relcnvfld 5191
Description: if  R is a relation, its double union equals the double union of its converse. (Contributed by FL, 5-Jan-2009.)
Assertion
Ref Expression
relcnvfld  |-  ( Rel 
R  ->  U. U. R  =  U. U. `' R
)

Proof of Theorem relcnvfld
StepHypRef Expression
1 relfld 5186 . 2  |-  ( Rel 
R  ->  U. U. R  =  ( dom  R  u.  ran  R ) )
2 unidmrn 5190 . 2  |-  U. U. `' R  =  ( dom  R  u.  ran  R
)
31, 2eqtr4di 2244 1  |-  ( Rel 
R  ->  U. U. R  =  U. U. `' R
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3151   U.cuni 3835   `'ccnv 4654   dom cdm 4655   ran crn 4656   Rel wrel 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4661  df-rel 4662  df-cnv 4663  df-dm 4665  df-rn 4666
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator