ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvfld GIF version

Theorem relcnvfld 4964
Description: if 𝑅 is a relation, its double union equals the double union of its converse. (Contributed by FL, 5-Jan-2009.)
Assertion
Ref Expression
relcnvfld (Rel 𝑅 𝑅 = 𝑅)

Proof of Theorem relcnvfld
StepHypRef Expression
1 relfld 4959 . 2 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
2 unidmrn 4963 . 2 𝑅 = (dom 𝑅 ∪ ran 𝑅)
31, 2syl6eqr 2138 1 (Rel 𝑅 𝑅 = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1289  cun 2997   cuni 3653  ccnv 4437  dom cdm 4438  ran crn 4439  Rel wrel 4443
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-xp 4444  df-rel 4445  df-cnv 4446  df-dm 4448  df-rn 4449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator