ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvfld GIF version

Theorem relcnvfld 5137
Description: if 𝑅 is a relation, its double union equals the double union of its converse. (Contributed by FL, 5-Jan-2009.)
Assertion
Ref Expression
relcnvfld (Rel 𝑅 𝑅 = 𝑅)

Proof of Theorem relcnvfld
StepHypRef Expression
1 relfld 5132 . 2 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
2 unidmrn 5136 . 2 𝑅 = (dom 𝑅 ∪ ran 𝑅)
31, 2eqtr4di 2217 1 (Rel 𝑅 𝑅 = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cun 3114   cuni 3789  ccnv 4603  dom cdm 4604  ran crn 4605  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator