ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvfld GIF version

Theorem relcnvfld 5238
Description: if 𝑅 is a relation, its double union equals the double union of its converse. (Contributed by FL, 5-Jan-2009.)
Assertion
Ref Expression
relcnvfld (Rel 𝑅 𝑅 = 𝑅)

Proof of Theorem relcnvfld
StepHypRef Expression
1 relfld 5233 . 2 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
2 unidmrn 5237 . 2 𝑅 = (dom 𝑅 ∪ ran 𝑅)
31, 2eqtr4di 2260 1 (Rel 𝑅 𝑅 = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  cun 3175   cuni 3867  ccnv 4695  dom cdm 4696  ran crn 4697  Rel wrel 4701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-xp 4702  df-rel 4703  df-cnv 4704  df-dm 4706  df-rn 4707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator