ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmghm Unicode version

Theorem reldmghm 13372
Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
reldmghm  |-  Rel  dom  GrpHom

Proof of Theorem reldmghm
Dummy variables  g  s  t  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 13371 . 2  |-  GrpHom  =  ( s  e.  Grp , 
t  e.  Grp  |->  { g  |  [. ( Base `  s )  /  w ]. ( g : w --> ( Base `  t
)  /\  A. x  e.  w  A. y  e.  w  ( g `  ( x ( +g  `  s ) y ) )  =  ( ( g `  x ) ( +g  `  t
) ( g `  y ) ) ) } )
21reldmmpo 6034 1  |-  Rel  dom  GrpHom
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   {cab 2182   A.wral 2475   [.wsbc 2989   dom cdm 4663   Rel wrel 4668   -->wf 5254   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   Grpcgrp 13132    GrpHom cghm 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-dm 4673  df-oprab 5926  df-mpo 5927  df-ghm 13371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator