ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmghm Unicode version

Theorem reldmghm 13693
Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
reldmghm  |-  Rel  dom  GrpHom

Proof of Theorem reldmghm
Dummy variables  g  s  t  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 13692 . 2  |-  GrpHom  =  ( s  e.  Grp , 
t  e.  Grp  |->  { g  |  [. ( Base `  s )  /  w ]. ( g : w --> ( Base `  t
)  /\  A. x  e.  w  A. y  e.  w  ( g `  ( x ( +g  `  s ) y ) )  =  ( ( g `  x ) ( +g  `  t
) ( g `  y ) ) ) } )
21reldmmpo 6080 1  |-  Rel  dom  GrpHom
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   {cab 2193   A.wral 2486   [.wsbc 3005   dom cdm 4693   Rel wrel 4698   -->wf 5286   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   Grpcgrp 13447    GrpHom cghm 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-dm 4703  df-oprab 5971  df-mpo 5972  df-ghm 13692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator