ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmghm Unicode version

Theorem reldmghm 13779
Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
reldmghm  |-  Rel  dom  GrpHom

Proof of Theorem reldmghm
Dummy variables  g  s  t  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 13778 . 2  |-  GrpHom  =  ( s  e.  Grp , 
t  e.  Grp  |->  { g  |  [. ( Base `  s )  /  w ]. ( g : w --> ( Base `  t
)  /\  A. x  e.  w  A. y  e.  w  ( g `  ( x ( +g  `  s ) y ) )  =  ( ( g `  x ) ( +g  `  t
) ( g `  y ) ) ) } )
21reldmmpo 6116 1  |-  Rel  dom  GrpHom
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   {cab 2215   A.wral 2508   [.wsbc 3028   dom cdm 4719   Rel wrel 4724   -->wf 5314   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   Grpcgrp 13533    GrpHom cghm 13777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-dm 4729  df-oprab 6005  df-mpo 6006  df-ghm 13778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator