![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reldmghm | GIF version |
Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
reldmghm | ⊢ Rel dom GrpHom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ghm 13314 | . 2 ⊢ GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) | |
2 | 1 | reldmmpo 6031 | 1 ⊢ Rel dom GrpHom |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 {cab 2179 ∀wral 2472 [wsbc 2986 dom cdm 4660 Rel wrel 4665 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 Grpcgrp 13075 GrpHom cghm 13313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-dm 4670 df-oprab 5923 df-mpo 5924 df-ghm 13314 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |