| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldmghm | GIF version | ||
| Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| reldmghm | ⊢ Rel dom GrpHom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ghm 13371 | . 2 ⊢ GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) | |
| 2 | 1 | reldmmpo 6034 | 1 ⊢ Rel dom GrpHom |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 {cab 2182 ∀wral 2475 [wsbc 2989 dom cdm 4663 Rel wrel 4668 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 Grpcgrp 13132 GrpHom cghm 13370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-dm 4673 df-oprab 5926 df-mpo 5927 df-ghm 13371 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |