![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reldmghm | GIF version |
Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
reldmghm | ⊢ Rel dom GrpHom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ghm 13311 | . 2 ⊢ GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) | |
2 | 1 | reldmmpo 6030 | 1 ⊢ Rel dom GrpHom |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 {cab 2179 ∀wral 2472 [wsbc 2985 dom cdm 4659 Rel wrel 4664 ⟶wf 5250 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 Grpcgrp 13072 GrpHom cghm 13310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-dm 4669 df-oprab 5922 df-mpo 5923 df-ghm 13311 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |