![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resiun2 | GIF version |
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
resiun2 | ⊢ (𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4640 | . 2 ⊢ (𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵) = (𝐶 ∩ (∪ 𝑥 ∈ 𝐴 𝐵 × V)) | |
2 | df-res 4640 | . . . . 5 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
3 | 2 | a1i 9 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V))) |
4 | 3 | iuneq2i 3906 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ (𝐵 × V)) |
5 | xpiundir 4687 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 × V) = ∪ 𝑥 ∈ 𝐴 (𝐵 × V) | |
6 | 5 | ineq2i 3335 | . . . 4 ⊢ (𝐶 ∩ (∪ 𝑥 ∈ 𝐴 𝐵 × V)) = (𝐶 ∩ ∪ 𝑥 ∈ 𝐴 (𝐵 × V)) |
7 | iunin2 3952 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ (𝐵 × V)) = (𝐶 ∩ ∪ 𝑥 ∈ 𝐴 (𝐵 × V)) | |
8 | 6, 7 | eqtr4i 2201 | . . 3 ⊢ (𝐶 ∩ (∪ 𝑥 ∈ 𝐴 𝐵 × V)) = ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ (𝐵 × V)) |
9 | 4, 8 | eqtr4i 2201 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) = (𝐶 ∩ (∪ 𝑥 ∈ 𝐴 𝐵 × V)) |
10 | 1, 9 | eqtr4i 2201 | 1 ⊢ (𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∩ cin 3130 ∪ ciun 3888 × cxp 4626 ↾ cres 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-iun 3890 df-opab 4067 df-xp 4634 df-res 4640 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |