ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiun2 GIF version

Theorem resiun2 5025
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
resiun2 (𝐶 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem resiun2
StepHypRef Expression
1 df-res 4731 . 2 (𝐶 𝑥𝐴 𝐵) = (𝐶 ∩ ( 𝑥𝐴 𝐵 × V))
2 df-res 4731 . . . . 5 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
32a1i 9 . . . 4 (𝑥𝐴 → (𝐶𝐵) = (𝐶 ∩ (𝐵 × V)))
43iuneq2i 3983 . . 3 𝑥𝐴 (𝐶𝐵) = 𝑥𝐴 (𝐶 ∩ (𝐵 × V))
5 xpiundir 4778 . . . . 5 ( 𝑥𝐴 𝐵 × V) = 𝑥𝐴 (𝐵 × V)
65ineq2i 3402 . . . 4 (𝐶 ∩ ( 𝑥𝐴 𝐵 × V)) = (𝐶 𝑥𝐴 (𝐵 × V))
7 iunin2 4029 . . . 4 𝑥𝐴 (𝐶 ∩ (𝐵 × V)) = (𝐶 𝑥𝐴 (𝐵 × V))
86, 7eqtr4i 2253 . . 3 (𝐶 ∩ ( 𝑥𝐴 𝐵 × V)) = 𝑥𝐴 (𝐶 ∩ (𝐵 × V))
94, 8eqtr4i 2253 . 2 𝑥𝐴 (𝐶𝐵) = (𝐶 ∩ ( 𝑥𝐴 𝐵 × V))
101, 9eqtr4i 2253 1 (𝐶 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196   ciun 3965   × cxp 4717  cres 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-iun 3967  df-opab 4146  df-xp 4725  df-res 4731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator