ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpiundir Unicode version

Theorem xpiundir 4598
Description: Distributive law for cross product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
xpiundir  |-  ( U_ x  e.  A  B  X.  C )  =  U_ x  e.  A  ( B  X.  C )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem xpiundir
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2709 . . . . 5  |-  ( E. x  e.  A  E. y ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  E. y E. x  e.  A  ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
2 df-rex 2422 . . . . . 6  |-  ( E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >.  <->  E. y ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
32rexbii 2442 . . . . 5  |-  ( E. x  e.  A  E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >.  <->  E. x  e.  A  E. y ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
4 eliun 3817 . . . . . . . 8  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
54anbi1i 453 . . . . . . 7  |-  ( ( y  e.  U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  ( E. x  e.  A  y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. )
)
6 r19.41v 2587 . . . . . . 7  |-  ( E. x  e.  A  ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  ( E. x  e.  A  y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. )
)
75, 6bitr4i 186 . . . . . 6  |-  ( ( y  e.  U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  E. x  e.  A  ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
87exbii 1584 . . . . 5  |-  ( E. y ( y  e. 
U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  E. y E. x  e.  A  ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
91, 3, 83bitr4ri 212 . . . 4  |-  ( E. y ( y  e. 
U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  E. x  e.  A  E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >. )
10 df-rex 2422 . . . 4  |-  ( E. y  e.  U_  x  e.  A  B E. w  e.  C  z  =  <. y ,  w >.  <->  E. y ( y  e. 
U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )
)
11 elxp2 4557 . . . . 5  |-  ( z  e.  ( B  X.  C )  <->  E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >. )
1211rexbii 2442 . . . 4  |-  ( E. x  e.  A  z  e.  ( B  X.  C )  <->  E. x  e.  A  E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >. )
139, 10, 123bitr4i 211 . . 3  |-  ( E. y  e.  U_  x  e.  A  B E. w  e.  C  z  =  <. y ,  w >.  <->  E. x  e.  A  z  e.  ( B  X.  C ) )
14 elxp2 4557 . . 3  |-  ( z  e.  ( U_ x  e.  A  B  X.  C )  <->  E. y  e.  U_  x  e.  A  B E. w  e.  C  z  =  <. y ,  w >. )
15 eliun 3817 . . 3  |-  ( z  e.  U_ x  e.  A  ( B  X.  C )  <->  E. x  e.  A  z  e.  ( B  X.  C
) )
1613, 14, 153bitr4i 211 . 2  |-  ( z  e.  ( U_ x  e.  A  B  X.  C )  <->  z  e.  U_ x  e.  A  ( B  X.  C ) )
1716eqriv 2136 1  |-  ( U_ x  e.  A  B  X.  C )  =  U_ x  e.  A  ( B  X.  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480   E.wrex 2417   <.cop 3530   U_ciun 3813    X. cxp 4537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-iun 3815  df-opab 3990  df-xp 4545
This theorem is referenced by:  iunxpconst  4599  resiun2  4839  txbasval  12450
  Copyright terms: Public domain W3C validator