ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpiundir Unicode version

Theorem xpiundir 4670
Description: Distributive law for cross product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
xpiundir  |-  ( U_ x  e.  A  B  X.  C )  =  U_ x  e.  A  ( B  X.  C )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem xpiundir
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2753 . . . . 5  |-  ( E. x  e.  A  E. y ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  E. y E. x  e.  A  ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
2 df-rex 2454 . . . . . 6  |-  ( E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >.  <->  E. y ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
32rexbii 2477 . . . . 5  |-  ( E. x  e.  A  E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >.  <->  E. x  e.  A  E. y ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
4 eliun 3877 . . . . . . . 8  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
54anbi1i 455 . . . . . . 7  |-  ( ( y  e.  U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  ( E. x  e.  A  y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. )
)
6 r19.41v 2626 . . . . . . 7  |-  ( E. x  e.  A  ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  ( E. x  e.  A  y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. )
)
75, 6bitr4i 186 . . . . . 6  |-  ( ( y  e.  U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  E. x  e.  A  ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
87exbii 1598 . . . . 5  |-  ( E. y ( y  e. 
U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  E. y E. x  e.  A  ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
91, 3, 83bitr4ri 212 . . . 4  |-  ( E. y ( y  e. 
U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  E. x  e.  A  E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >. )
10 df-rex 2454 . . . 4  |-  ( E. y  e.  U_  x  e.  A  B E. w  e.  C  z  =  <. y ,  w >.  <->  E. y ( y  e. 
U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )
)
11 elxp2 4629 . . . . 5  |-  ( z  e.  ( B  X.  C )  <->  E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >. )
1211rexbii 2477 . . . 4  |-  ( E. x  e.  A  z  e.  ( B  X.  C )  <->  E. x  e.  A  E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >. )
139, 10, 123bitr4i 211 . . 3  |-  ( E. y  e.  U_  x  e.  A  B E. w  e.  C  z  =  <. y ,  w >.  <->  E. x  e.  A  z  e.  ( B  X.  C ) )
14 elxp2 4629 . . 3  |-  ( z  e.  ( U_ x  e.  A  B  X.  C )  <->  E. y  e.  U_  x  e.  A  B E. w  e.  C  z  =  <. y ,  w >. )
15 eliun 3877 . . 3  |-  ( z  e.  U_ x  e.  A  ( B  X.  C )  <->  E. x  e.  A  z  e.  ( B  X.  C
) )
1613, 14, 153bitr4i 211 . 2  |-  ( z  e.  ( U_ x  e.  A  B  X.  C )  <->  z  e.  U_ x  e.  A  ( B  X.  C ) )
1716eqriv 2167 1  |-  ( U_ x  e.  A  B  X.  C )  =  U_ x  e.  A  ( B  X.  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   E.wrex 2449   <.cop 3586   U_ciun 3873    X. cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-iun 3875  df-opab 4051  df-xp 4617
This theorem is referenced by:  iunxpconst  4671  resiun2  4911  txbasval  13061
  Copyright terms: Public domain W3C validator