![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexeqi | Unicode version |
Description: Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
raleq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rexeqi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | rexeq 2691 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 |
This theorem is referenced by: rexrab2 2928 rexprg 3671 rextpg 3673 rexxp 4807 rexrnmpo 6035 0ct 7168 nninfwlpoimlemg 7236 arch 9240 zproddc 11725 infssuzex 12089 gcdsupex 12097 gcdsupcl 12098 dvdsprmpweqnn 12477 4sqlem12 12543 txbas 14437 plyun0 14915 |
Copyright terms: Public domain | W3C validator |