| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqi | Unicode version | ||
| Description: Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raleq1i.1 |
|
| Ref | Expression |
|---|---|
| rexeqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 |
. 2
| |
| 2 | rexeq 2729 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 |
| This theorem is referenced by: rexrab2 2970 rexprg 3718 rextpg 3720 rexxp 4866 rexrnmpo 6120 0ct 7274 nninfwlpoimlemg 7342 arch 9366 infssuzex 10453 zproddc 12090 gcdsupex 12478 gcdsupcl 12479 dvdsprmpweqnn 12859 4sqlem12 12925 txbas 14932 plyun0 15410 |
| Copyright terms: Public domain | W3C validator |