| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqi | Unicode version | ||
| Description: Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raleq1i.1 |
|
| Ref | Expression |
|---|---|
| rexeqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 |
. 2
| |
| 2 | rexeq 2706 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 |
| This theorem is referenced by: rexrab2 2947 rexprg 3695 rextpg 3697 rexxp 4840 rexrnmpo 6084 0ct 7235 nninfwlpoimlemg 7303 arch 9327 infssuzex 10413 zproddc 12005 gcdsupex 12393 gcdsupcl 12394 dvdsprmpweqnn 12774 4sqlem12 12840 txbas 14845 plyun0 15323 |
| Copyright terms: Public domain | W3C validator |