| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqi | Unicode version | ||
| Description: Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raleq1i.1 |
|
| Ref | Expression |
|---|---|
| rexeqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 |
. 2
| |
| 2 | rexeq 2703 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 |
| This theorem is referenced by: rexrab2 2940 rexprg 3685 rextpg 3687 rexxp 4822 rexrnmpo 6061 0ct 7209 nninfwlpoimlemg 7277 arch 9292 infssuzex 10376 zproddc 11890 gcdsupex 12278 gcdsupcl 12279 dvdsprmpweqnn 12659 4sqlem12 12725 txbas 14730 plyun0 15208 |
| Copyright terms: Public domain | W3C validator |