ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqi Unicode version

Theorem rexeqi 2707
Description: Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
raleq1i.1  |-  A  =  B
Assertion
Ref Expression
rexeqi  |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ph )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem rexeqi
StepHypRef Expression
1 raleq1i.1 . 2  |-  A  =  B
2 rexeq 2703 . 2  |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ph ) )
31, 2ax-mp 5 1  |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490
This theorem is referenced by:  rexrab2  2940  rexprg  3685  rextpg  3687  rexxp  4822  rexrnmpo  6061  0ct  7209  nninfwlpoimlemg  7277  arch  9292  infssuzex  10376  zproddc  11890  gcdsupex  12278  gcdsupcl  12279  dvdsprmpweqnn  12659  4sqlem12  12725  txbas  14730  plyun0  15208
  Copyright terms: Public domain W3C validator