ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqi Unicode version

Theorem rexeqi 2710
Description: Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
raleq1i.1  |-  A  =  B
Assertion
Ref Expression
rexeqi  |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ph )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem rexeqi
StepHypRef Expression
1 raleq1i.1 . 2  |-  A  =  B
2 rexeq 2706 . 2  |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ph ) )
31, 2ax-mp 5 1  |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   E.wrex 2487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492
This theorem is referenced by:  rexrab2  2947  rexprg  3695  rextpg  3697  rexxp  4840  rexrnmpo  6084  0ct  7235  nninfwlpoimlemg  7303  arch  9327  infssuzex  10413  zproddc  12005  gcdsupex  12393  gcdsupcl  12394  dvdsprmpweqnn  12774  4sqlem12  12840  txbas  14845  plyun0  15323
  Copyright terms: Public domain W3C validator