| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexprg | GIF version | ||
| Description: Convert a quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralprg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ralprg.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3673 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 2 | 1 | rexeqi 2733 | . . 3 ⊢ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ∃𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑) |
| 3 | rexun 3384 | . . 3 ⊢ (∃𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑)) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑)) |
| 5 | ralprg.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | rexsng 3707 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 7 | 6 | orbi1d 796 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑) ↔ (𝜓 ∨ ∃𝑥 ∈ {𝐵}𝜑))) |
| 8 | ralprg.2 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 9 | 8 | rexsng 3707 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (∃𝑥 ∈ {𝐵}𝜑 ↔ 𝜒)) |
| 10 | 9 | orbi2d 795 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ((𝜓 ∨ ∃𝑥 ∈ {𝐵}𝜑) ↔ (𝜓 ∨ 𝜒))) |
| 11 | 7, 10 | sylan9bb 462 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑) ↔ (𝜓 ∨ 𝜒))) |
| 12 | 4, 11 | bitrid 192 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 ∪ cun 3195 {csn 3666 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: rextpg 3720 rexpr 3722 minmax 11749 xrminmax 11784 |
| Copyright terms: Public domain | W3C validator |