| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotaprop | GIF version | ||
| Description: Properties of a restricted definite description operator. Todo (df-riota 5917 update): can some uses of riota2f 5939 be shortened with this? (Contributed by NM, 23-Nov-2013.) |
| Ref | Expression |
|---|---|
| riotaprop.0 | ⊢ Ⅎ𝑥𝜓 |
| riotaprop.1 | ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 𝜑) |
| riotaprop.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riotaprop | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (𝐵 ∈ 𝐴 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaprop.1 | . . 3 ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 𝜑) | |
| 2 | riotacl 5932 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | |
| 3 | 1, 2 | eqeltrid 2293 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → 𝐵 ∈ 𝐴) |
| 4 | 1 | eqcomi 2210 | . . . 4 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵 |
| 5 | nfriota1 5925 | . . . . . 6 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) | |
| 6 | 1, 5 | nfcxfr 2346 | . . . . 5 ⊢ Ⅎ𝑥𝐵 |
| 7 | riotaprop.0 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 8 | riotaprop.2 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 9 | 6, 7, 8 | riota2f 5939 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| 10 | 4, 9 | mpbiri 168 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → 𝜓) |
| 11 | 3, 10 | mpancom 422 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| 12 | 3, 11 | jca 306 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (𝐵 ∈ 𝐴 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2177 ∃!wreu 2487 ℩crio 5916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-uni 3860 df-iota 5246 df-riota 5917 |
| This theorem is referenced by: lble 9050 |
| Copyright terms: Public domain | W3C validator |