| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotaprop | GIF version | ||
| Description: Properties of a restricted definite description operator. Todo (df-riota 5953 update): can some uses of riota2f 5976 be shortened with this? (Contributed by NM, 23-Nov-2013.) |
| Ref | Expression |
|---|---|
| riotaprop.0 | ⊢ Ⅎ𝑥𝜓 |
| riotaprop.1 | ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 𝜑) |
| riotaprop.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riotaprop | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (𝐵 ∈ 𝐴 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaprop.1 | . . 3 ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 𝜑) | |
| 2 | riotacl 5969 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | |
| 3 | 1, 2 | eqeltrid 2316 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → 𝐵 ∈ 𝐴) |
| 4 | 1 | eqcomi 2233 | . . . 4 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵 |
| 5 | nfriota1 5961 | . . . . . 6 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) | |
| 6 | 1, 5 | nfcxfr 2369 | . . . . 5 ⊢ Ⅎ𝑥𝐵 |
| 7 | riotaprop.0 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 8 | riotaprop.2 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 9 | 6, 7, 8 | riota2f 5976 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| 10 | 4, 9 | mpbiri 168 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → 𝜓) |
| 11 | 3, 10 | mpancom 422 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| 12 | 3, 11 | jca 306 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (𝐵 ∈ 𝐴 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 ∃!wreu 2510 ℩crio 5952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-uni 3888 df-iota 5277 df-riota 5953 |
| This theorem is referenced by: lble 9090 |
| Copyright terms: Public domain | W3C validator |