ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaprop GIF version

Theorem riotaprop 5821
Description: Properties of a restricted definite description operator. Todo (df-riota 5798 update): can some uses of riota2f 5819 be shortened with this? (Contributed by NM, 23-Nov-2013.)
Hypotheses
Ref Expression
riotaprop.0 𝑥𝜓
riotaprop.1 𝐵 = (𝑥𝐴 𝜑)
riotaprop.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
riotaprop (∃!𝑥𝐴 𝜑 → (𝐵𝐴𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem riotaprop
StepHypRef Expression
1 riotaprop.1 . . 3 𝐵 = (𝑥𝐴 𝜑)
2 riotacl 5812 . . 3 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
31, 2eqeltrid 2253 . 2 (∃!𝑥𝐴 𝜑𝐵𝐴)
41eqcomi 2169 . . . 4 (𝑥𝐴 𝜑) = 𝐵
5 nfriota1 5805 . . . . . 6 𝑥(𝑥𝐴 𝜑)
61, 5nfcxfr 2305 . . . . 5 𝑥𝐵
7 riotaprop.0 . . . . 5 𝑥𝜓
8 riotaprop.2 . . . . 5 (𝑥 = 𝐵 → (𝜑𝜓))
96, 7, 8riota2f 5819 . . . 4 ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜓 ↔ (𝑥𝐴 𝜑) = 𝐵))
104, 9mpbiri 167 . . 3 ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → 𝜓)
113, 10mpancom 419 . 2 (∃!𝑥𝐴 𝜑𝜓)
123, 11jca 304 1 (∃!𝑥𝐴 𝜑 → (𝐵𝐴𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wnf 1448  wcel 2136  ∃!wreu 2446  crio 5797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-uni 3790  df-iota 5153  df-riota 5798
This theorem is referenced by:  lble  8842
  Copyright terms: Public domain W3C validator