ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaprop GIF version

Theorem riotaprop 5832
Description: Properties of a restricted definite description operator. Todo (df-riota 5809 update): can some uses of riota2f 5830 be shortened with this? (Contributed by NM, 23-Nov-2013.)
Hypotheses
Ref Expression
riotaprop.0 𝑥𝜓
riotaprop.1 𝐵 = (𝑥𝐴 𝜑)
riotaprop.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
riotaprop (∃!𝑥𝐴 𝜑 → (𝐵𝐴𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem riotaprop
StepHypRef Expression
1 riotaprop.1 . . 3 𝐵 = (𝑥𝐴 𝜑)
2 riotacl 5823 . . 3 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
31, 2eqeltrid 2257 . 2 (∃!𝑥𝐴 𝜑𝐵𝐴)
41eqcomi 2174 . . . 4 (𝑥𝐴 𝜑) = 𝐵
5 nfriota1 5816 . . . . . 6 𝑥(𝑥𝐴 𝜑)
61, 5nfcxfr 2309 . . . . 5 𝑥𝐵
7 riotaprop.0 . . . . 5 𝑥𝜓
8 riotaprop.2 . . . . 5 (𝑥 = 𝐵 → (𝜑𝜓))
96, 7, 8riota2f 5830 . . . 4 ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜓 ↔ (𝑥𝐴 𝜑) = 𝐵))
104, 9mpbiri 167 . . 3 ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → 𝜓)
113, 10mpancom 420 . 2 (∃!𝑥𝐴 𝜑𝜓)
123, 11jca 304 1 (∃!𝑥𝐴 𝜑 → (𝐵𝐴𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wnf 1453  wcel 2141  ∃!wreu 2450  crio 5808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-uni 3797  df-iota 5160  df-riota 5809
This theorem is referenced by:  lble  8863
  Copyright terms: Public domain W3C validator