| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > riotaprop | GIF version | ||
| Description: Properties of a restricted definite description operator. Todo (df-riota 5877 update): can some uses of riota2f 5899 be shortened with this? (Contributed by NM, 23-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| riotaprop.0 | ⊢ Ⅎ𝑥𝜓 | 
| riotaprop.1 | ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 𝜑) | 
| riotaprop.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| riotaprop | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (𝐵 ∈ 𝐴 ∧ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | riotaprop.1 | . . 3 ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 𝜑) | |
| 2 | riotacl 5892 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | |
| 3 | 1, 2 | eqeltrid 2283 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → 𝐵 ∈ 𝐴) | 
| 4 | 1 | eqcomi 2200 | . . . 4 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵 | 
| 5 | nfriota1 5885 | . . . . . 6 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) | |
| 6 | 1, 5 | nfcxfr 2336 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | 
| 7 | riotaprop.0 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 8 | riotaprop.2 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 9 | 6, 7, 8 | riota2f 5899 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) | 
| 10 | 4, 9 | mpbiri 168 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → 𝜓) | 
| 11 | 3, 10 | mpancom 422 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → 𝜓) | 
| 12 | 3, 11 | jca 306 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (𝐵 ∈ 𝐴 ∧ 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 ∃!wreu 2477 ℩crio 5876 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 df-riota 5877 | 
| This theorem is referenced by: lble 8974 | 
| Copyright terms: Public domain | W3C validator |