ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rerecclap Unicode version

Theorem rerecclap 8689
Description: Closure law for reciprocal. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
rerecclap  |-  ( ( A  e.  RR  /\  A #  0 )  ->  (
1  /  A )  e.  RR )

Proof of Theorem rerecclap
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0re 7959 . . . . . 6  |-  0  e.  RR
2 apreap 8546 . . . . . 6  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A #  0  <->  A #  0
) )
31, 2mpan2 425 . . . . 5  |-  ( A  e.  RR  ->  ( A #  0  <->  A #  0 ) )
43pm5.32i 454 . . . 4  |-  ( ( A  e.  RR  /\  A #  0 )  <->  ( A  e.  RR  /\  A #  0 ) )
5 recexre 8537 . . . 4  |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
64, 5sylbi 121 . . 3  |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
7 eqcom 2179 . . . . 5  |-  ( x  =  ( 1  /  A )  <->  ( 1  /  A )  =  x )
8 1cnd 7975 . . . . . 6  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  1  e.  CC )
9 simpr 110 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  x  e.  RR )
109recnd 7988 . . . . . 6  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  x  e.  CC )
11 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  A  e.  RR )
1211recnd 7988 . . . . . 6  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  A  e.  CC )
13 simplr 528 . . . . . 6  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  A #  0 )
14 divmulap 8634 . . . . . 6  |-  ( ( 1  e.  CC  /\  x  e.  CC  /\  ( A  e.  CC  /\  A #  0 ) )  -> 
( ( 1  /  A )  =  x  <-> 
( A  x.  x
)  =  1 ) )
158, 10, 12, 13, 14syl112anc 1242 . . . . 5  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  ( ( 1  /  A )  =  x  <-> 
( A  x.  x
)  =  1 ) )
167, 15bitrid 192 . . . 4  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  ( x  =  ( 1  /  A )  <-> 
( A  x.  x
)  =  1 ) )
1716rexbidva 2474 . . 3  |-  ( ( A  e.  RR  /\  A #  0 )  ->  ( E. x  e.  RR  x  =  ( 1  /  A )  <->  E. x  e.  RR  ( A  x.  x )  =  1 ) )
186, 17mpbird 167 . 2  |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  x  =  ( 1  /  A ) )
19 risset 2505 . 2  |-  ( ( 1  /  A )  e.  RR  <->  E. x  e.  RR  x  =  ( 1  /  A ) )
2018, 19sylibr 134 1  |-  ( ( A  e.  RR  /\  A #  0 )  ->  (
1  /  A )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4005  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813   1c1 7814    x. cmul 7818   # creap 8533   # cap 8540    / cdiv 8631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632
This theorem is referenced by:  redivclap  8690  rerecclapzi  8735  rerecclapd  8793  rerecapb  8802  ltdiv2  8846  recnz  9348  reexpclzap  10542  redivap  10885  imdivap  10892  caucvgrelemrec  10990  trirec0  14877
  Copyright terms: Public domain W3C validator