ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rerecclap Unicode version

Theorem rerecclap 8171
Description: Closure law for reciprocal. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
rerecclap  |-  ( ( A  e.  RR  /\  A #  0 )  ->  (
1  /  A )  e.  RR )

Proof of Theorem rerecclap
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0re 7467 . . . . . 6  |-  0  e.  RR
2 apreap 8040 . . . . . 6  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A #  0  <->  A #  0
) )
31, 2mpan2 416 . . . . 5  |-  ( A  e.  RR  ->  ( A #  0  <->  A #  0 ) )
43pm5.32i 442 . . . 4  |-  ( ( A  e.  RR  /\  A #  0 )  <->  ( A  e.  RR  /\  A #  0 ) )
5 recexre 8031 . . . 4  |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
64, 5sylbi 119 . . 3  |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
7 eqcom 2090 . . . . 5  |-  ( x  =  ( 1  /  A )  <->  ( 1  /  A )  =  x )
8 1cnd 7483 . . . . . 6  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  1  e.  CC )
9 simpr 108 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  x  e.  RR )
109recnd 7495 . . . . . 6  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  x  e.  CC )
11 simpll 496 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  A  e.  RR )
1211recnd 7495 . . . . . 6  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  A  e.  CC )
13 simplr 497 . . . . . 6  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  A #  0 )
14 divmulap 8116 . . . . . 6  |-  ( ( 1  e.  CC  /\  x  e.  CC  /\  ( A  e.  CC  /\  A #  0 ) )  -> 
( ( 1  /  A )  =  x  <-> 
( A  x.  x
)  =  1 ) )
158, 10, 12, 13, 14syl112anc 1178 . . . . 5  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  ( ( 1  /  A )  =  x  <-> 
( A  x.  x
)  =  1 ) )
167, 15syl5bb 190 . . . 4  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  x  e.  RR )  ->  ( x  =  ( 1  /  A )  <-> 
( A  x.  x
)  =  1 ) )
1716rexbidva 2377 . . 3  |-  ( ( A  e.  RR  /\  A #  0 )  ->  ( E. x  e.  RR  x  =  ( 1  /  A )  <->  E. x  e.  RR  ( A  x.  x )  =  1 ) )
186, 17mpbird 165 . 2  |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  x  =  ( 1  /  A ) )
19 risset 2406 . 2  |-  ( ( 1  /  A )  e.  RR  <->  E. x  e.  RR  x  =  ( 1  /  A ) )
2018, 19sylibr 132 1  |-  ( ( A  e.  RR  /\  A #  0 )  ->  (
1  /  A )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   E.wrex 2360   class class class wbr 3837  (class class class)co 5634   CCcc 7327   RRcr 7328   0cc0 7329   1c1 7330    x. cmul 7334   # creap 8027   # cap 8034    / cdiv 8113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114
This theorem is referenced by:  redivclap  8172  rerecclapzi  8217  rerecclapd  8272  ltdiv2  8320  recnz  8809  reexpclzap  9940  redivap  10273  imdivap  10280  caucvgrelemrec  10377
  Copyright terms: Public domain W3C validator