Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zq | Unicode version |
Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.) |
Ref | Expression |
---|---|
zq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2159 | . . . . 5 | |
2 | zcn 9155 | . . . . . . 7 | |
3 | 2 | div1d 8636 | . . . . . 6 |
4 | 3 | eqeq2d 2169 | . . . . 5 |
5 | 1, 4 | bitr4id 198 | . . . 4 |
6 | 1nn 8827 | . . . . 5 | |
7 | oveq2 5826 | . . . . . . 7 | |
8 | 7 | eqeq2d 2169 | . . . . . 6 |
9 | 8 | rspcev 2816 | . . . . 5 |
10 | 6, 9 | mpan 421 | . . . 4 |
11 | 5, 10 | syl6bi 162 | . . 3 |
12 | 11 | reximia 2552 | . 2 |
13 | risset 2485 | . 2 | |
14 | elq 9513 | . 2 | |
15 | 12, 13, 14 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wcel 2128 wrex 2436 (class class class)co 5818 c1 7716 cdiv 8528 cn 8816 cz 9150 cq 9510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-po 4255 df-iso 4256 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-z 9151 df-q 9511 |
This theorem is referenced by: zssq 9518 qdivcl 9534 irrmul 9538 qbtwnz 10133 qbtwnxr 10139 flqlt 10164 flid 10165 flqltnz 10168 flqbi2 10172 flqaddz 10178 flqmulnn0 10180 ceilid 10196 flqeqceilz 10199 flqdiv 10202 modqcl 10207 mulqmod0 10211 modqfrac 10218 zmod10 10221 modqmulnn 10223 zmodcl 10225 zmodfz 10227 zmodid2 10233 q0mod 10236 q1mod 10237 modqcyc 10240 mulp1mod1 10246 modqmuladd 10247 modqmuladdim 10248 modqmuladdnn0 10249 m1modnnsub1 10251 addmodid 10253 modqm1p1mod0 10256 modqltm1p1mod 10257 modqmul1 10258 modqmul12d 10259 q2txmodxeq0 10265 modifeq2int 10267 modaddmodup 10268 modaddmodlo 10269 modqaddmulmod 10272 modqdi 10273 modqsubdir 10274 modsumfzodifsn 10277 addmodlteq 10279 qexpcl 10417 qexpclz 10422 iexpcyc 10505 facavg 10602 bcval 10605 qabsor 10957 modfsummodlemstep 11336 egt2lt3 11658 dvdsval3 11669 p1modz1 11672 moddvds 11677 absdvdsb 11686 dvdsabsb 11687 dvdslelemd 11716 dvdsmod 11735 mulmoddvds 11736 divalglemnn 11790 divalgmod 11799 fldivndvdslt 11807 gcdabs 11852 gcdabs1 11853 modgcd 11855 bezoutlemnewy 11860 bezoutlemstep 11861 eucalglt 11914 lcmabs 11933 sqrt2irraplemnn 12033 nn0sqrtelqelz 12060 crth 12076 phimullem 12077 eulerthlema 12082 eulerthlemh 12083 fermltl 12086 prmdiv 12087 prmdiveq 12088 2logb9irrALT 13251 2irrexpq 13253 2irrexpqap 13255 apdifflemr 13580 apdiff 13581 |
Copyright terms: Public domain | W3C validator |