Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zq | Unicode version |
Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.) |
Ref | Expression |
---|---|
zq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2167 | . . . . 5 | |
2 | zcn 9192 | . . . . . . 7 | |
3 | 2 | div1d 8672 | . . . . . 6 |
4 | 3 | eqeq2d 2177 | . . . . 5 |
5 | 1, 4 | bitr4id 198 | . . . 4 |
6 | 1nn 8864 | . . . . 5 | |
7 | oveq2 5849 | . . . . . . 7 | |
8 | 7 | eqeq2d 2177 | . . . . . 6 |
9 | 8 | rspcev 2829 | . . . . 5 |
10 | 6, 9 | mpan 421 | . . . 4 |
11 | 5, 10 | syl6bi 162 | . . 3 |
12 | 11 | reximia 2560 | . 2 |
13 | risset 2493 | . 2 | |
14 | elq 9556 | . 2 | |
15 | 12, 13, 14 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 wrex 2444 (class class class)co 5841 c1 7750 cdiv 8564 cn 8853 cz 9187 cq 9553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-po 4273 df-iso 4274 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-z 9188 df-q 9554 |
This theorem is referenced by: zssq 9561 qdivcl 9577 irrmul 9581 qbtwnz 10183 qbtwnxr 10189 flqlt 10214 flid 10215 flqltnz 10218 flqbi2 10222 flqaddz 10228 flqmulnn0 10230 ceilid 10246 flqeqceilz 10249 flqdiv 10252 modqcl 10257 mulqmod0 10261 modqfrac 10268 zmod10 10271 modqmulnn 10273 zmodcl 10275 zmodfz 10277 zmodid2 10283 q0mod 10286 q1mod 10287 modqcyc 10290 mulp1mod1 10296 modqmuladd 10297 modqmuladdim 10298 modqmuladdnn0 10299 m1modnnsub1 10301 addmodid 10303 modqm1p1mod0 10306 modqltm1p1mod 10307 modqmul1 10308 modqmul12d 10309 q2txmodxeq0 10315 modifeq2int 10317 modaddmodup 10318 modaddmodlo 10319 modqaddmulmod 10322 modqdi 10323 modqsubdir 10324 modsumfzodifsn 10327 addmodlteq 10329 qexpcl 10467 qexpclz 10472 iexpcyc 10555 qsqeqor 10561 facavg 10655 bcval 10658 qabsor 11013 modfsummodlemstep 11394 egt2lt3 11716 dvdsval3 11727 p1modz1 11730 moddvds 11735 modm1div 11736 absdvdsb 11745 dvdsabsb 11746 dvdslelemd 11777 dvdsmod 11796 mulmoddvds 11797 divalglemnn 11851 divalgmod 11860 fldivndvdslt 11868 gcdabs 11917 gcdabs1 11918 modgcd 11920 bezoutlemnewy 11925 bezoutlemstep 11926 eucalglt 11985 lcmabs 12004 sqrt2irraplemnn 12107 nn0sqrtelqelz 12134 crth 12152 phimullem 12153 eulerthlema 12158 eulerthlemh 12159 fermltl 12162 prmdiv 12163 prmdiveq 12164 odzdvds 12173 vfermltl 12179 powm2modprm 12180 modprm0 12182 modprmn0modprm0 12184 pceu 12223 pczpre 12225 pcdiv 12230 pc0 12232 pcqdiv 12235 pcrec 12236 pcexp 12237 pcxcl 12239 pcdvdstr 12254 pcgcd1 12255 pc2dvds 12257 pc11 12258 pcaddlem 12266 pcadd 12267 fldivp1 12274 qexpz 12278 4sqlem5 12308 4sqlem6 12309 4sqlem10 12313 2logb9irrALT 13492 2irrexpq 13494 2irrexpqap 13496 lgslem1 13501 lgsvalmod 13520 lgsneg 13525 lgsmod 13527 lgsdir2lem4 13532 lgsdirprm 13535 lgsdilem2 13537 lgsne0 13539 apdifflemr 13886 apdiff 13887 |
Copyright terms: Public domain | W3C validator |