![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zq | Unicode version |
Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.) |
Ref | Expression |
---|---|
zq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2179 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | zcn 9247 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | div1d 8726 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | eqeq2d 2189 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | bitr4id 199 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1nn 8919 |
. . . . 5
![]() ![]() ![]() ![]() | |
7 | oveq2 5877 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 7 | eqeq2d 2189 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | rspcev 2841 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 6, 9 | mpan 424 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 5, 10 | syl6bi 163 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 11 | reximia 2572 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | risset 2505 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | elq 9611 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | 12, 13, 14 | 3imtr4i 201 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4118 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-id 4290 df-po 4293 df-iso 4294 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-z 9243 df-q 9609 |
This theorem is referenced by: zssq 9616 qdivcl 9632 irrmul 9636 qbtwnz 10238 qbtwnxr 10244 flqlt 10269 flid 10270 flqltnz 10273 flqbi2 10277 flqaddz 10283 flqmulnn0 10285 ceilid 10301 flqeqceilz 10304 flqdiv 10307 modqcl 10312 mulqmod0 10316 modqfrac 10323 zmod10 10326 modqmulnn 10328 zmodcl 10330 zmodfz 10332 zmodid2 10338 q0mod 10341 q1mod 10342 modqcyc 10345 mulp1mod1 10351 modqmuladd 10352 modqmuladdim 10353 modqmuladdnn0 10354 m1modnnsub1 10356 addmodid 10358 modqm1p1mod0 10361 modqltm1p1mod 10362 modqmul1 10363 modqmul12d 10364 q2txmodxeq0 10370 modifeq2int 10372 modaddmodup 10373 modaddmodlo 10374 modqaddmulmod 10377 modqdi 10378 modqsubdir 10379 modsumfzodifsn 10382 addmodlteq 10384 qexpcl 10522 qexpclz 10527 iexpcyc 10610 qsqeqor 10616 facavg 10710 bcval 10713 qabsor 11068 modfsummodlemstep 11449 egt2lt3 11771 dvdsval3 11782 p1modz1 11785 moddvds 11790 modm1div 11791 absdvdsb 11800 dvdsabsb 11801 dvdslelemd 11832 dvdsmod 11851 mulmoddvds 11852 divalglemnn 11906 divalgmod 11915 fldivndvdslt 11923 gcdabs 11972 gcdabs1 11973 modgcd 11975 bezoutlemnewy 11980 bezoutlemstep 11981 eucalglt 12040 lcmabs 12059 sqrt2irraplemnn 12162 nn0sqrtelqelz 12189 crth 12207 phimullem 12208 eulerthlema 12213 eulerthlemh 12214 fermltl 12217 prmdiv 12218 prmdiveq 12219 odzdvds 12228 vfermltl 12234 powm2modprm 12235 modprm0 12237 modprmn0modprm0 12239 pceu 12278 pczpre 12280 pcdiv 12285 pc0 12287 pcqdiv 12290 pcrec 12291 pcexp 12292 pcxcl 12294 pcdvdstr 12309 pcgcd1 12310 pc2dvds 12312 pc11 12313 pcaddlem 12321 pcadd 12322 fldivp1 12329 qexpz 12333 4sqlem5 12363 4sqlem6 12364 4sqlem10 12368 mulgmodid 12910 2logb9irrALT 14059 2irrexpq 14061 2irrexpqap 14063 lgslem1 14068 lgsvalmod 14087 lgsneg 14092 lgsmod 14094 lgsdir2lem4 14099 lgsdirprm 14102 lgsdilem2 14104 lgsne0 14106 apdifflemr 14451 apdiff 14452 |
Copyright terms: Public domain | W3C validator |