ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiun3g Unicode version

Theorem dfiun3g 4924
Description: Alternate definition of indexed union when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfiun3g  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )

Proof of Theorem dfiun3g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 3949 . 2  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
2 eqid 2196 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
32rnmpt 4915 . . 3  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
43unieqi 3850 . 2  |-  U. ran  ( x  e.  A  |->  B )  =  U. { y  |  E. x  e.  A  y  =  B }
51, 4eqtr4di 2247 1  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   U.cuni 3840   U_ciun 3917    |-> cmpt 4095   ran crn 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-cnv 4672  df-dm 4674  df-rn 4675
This theorem is referenced by:  dfiun3  4926  iunon  6351  tgiun  14393
  Copyright terms: Public domain W3C validator