ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiun3g Unicode version

Theorem dfiun3g 4919
Description: Alternate definition of indexed union when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfiun3g  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )

Proof of Theorem dfiun3g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 3944 . 2  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
2 eqid 2193 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
32rnmpt 4910 . . 3  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
43unieqi 3845 . 2  |-  U. ran  ( x  e.  A  |->  B )  =  U. { y  |  E. x  e.  A  y  =  B }
51, 4eqtr4di 2244 1  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   U.cuni 3835   U_ciun 3912    |-> cmpt 4090   ran crn 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-cnv 4667  df-dm 4669  df-rn 4670
This theorem is referenced by:  dfiun3  4921  iunon  6337  tgiun  14241
  Copyright terms: Public domain W3C validator