ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiun3g Unicode version

Theorem dfiun3g 4861
Description: Alternate definition of indexed union when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfiun3g  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )

Proof of Theorem dfiun3g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 3898 . 2  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
2 eqid 2165 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
32rnmpt 4852 . . 3  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
43unieqi 3799 . 2  |-  U. ran  ( x  e.  A  |->  B )  =  U. { y  |  E. x  e.  A  y  =  B }
51, 4eqtr4di 2217 1  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   U.cuni 3789   U_ciun 3866    |-> cmpt 4043   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  dfiun3  4863  iunon  6252  tgiun  12713
  Copyright terms: Public domain W3C validator