ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiun3g Unicode version

Theorem dfiun3g 4868
Description: Alternate definition of indexed union when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfiun3g  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )

Proof of Theorem dfiun3g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 3905 . 2  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
2 eqid 2170 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
32rnmpt 4859 . . 3  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
43unieqi 3806 . 2  |-  U. ran  ( x  e.  A  |->  B )  =  U. { y  |  E. x  e.  A  y  =  B }
51, 4eqtr4di 2221 1  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   U.cuni 3796   U_ciun 3873    |-> cmpt 4050   ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by:  dfiun3  4870  iunon  6263  tgiun  12867
  Copyright terms: Public domain W3C validator