ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0 Unicode version

Theorem f0 5515
Description: The empty function. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
f0  |-  (/) : (/) --> A

Proof of Theorem f0
StepHypRef Expression
1 eqid 2229 . . 3  |-  (/)  =  (/)
2 fn0 5442 . . 3  |-  ( (/)  Fn  (/) 
<->  (/)  =  (/) )
31, 2mpbir 146 . 2  |-  (/)  Fn  (/)
4 rn0 4979 . . 3  |-  ran  (/)  =  (/)
5 0ss 3530 . . 3  |-  (/)  C_  A
64, 5eqsstri 3256 . 2  |-  ran  (/)  C_  A
7 df-f 5321 . 2  |-  ( (/) :
(/) --> A  <->  ( (/)  Fn  (/)  /\  ran  (/)  C_  A ) )
83, 6, 7mpbir2an 948 1  |-  (/) : (/) --> A
Colors of variables: wff set class
Syntax hints:    = wceq 1395    C_ wss 3197   (/)c0 3491   ran crn 4719    Fn wfn 5312   -->wf 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321
This theorem is referenced by:  f00  5516  f0bi  5517  f10  5605  map0g  6833  ac6sfi  7056  wrd0  11091  gsum0g  13424  0met  15052  uhgr0e  15876  uhgr0  15879
  Copyright terms: Public domain W3C validator