ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0 Unicode version

Theorem f0 5466
Description: The empty function. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
f0  |-  (/) : (/) --> A

Proof of Theorem f0
StepHypRef Expression
1 eqid 2205 . . 3  |-  (/)  =  (/)
2 fn0 5395 . . 3  |-  ( (/)  Fn  (/) 
<->  (/)  =  (/) )
31, 2mpbir 146 . 2  |-  (/)  Fn  (/)
4 rn0 4934 . . 3  |-  ran  (/)  =  (/)
5 0ss 3499 . . 3  |-  (/)  C_  A
64, 5eqsstri 3225 . 2  |-  ran  (/)  C_  A
7 df-f 5275 . 2  |-  ( (/) :
(/) --> A  <->  ( (/)  Fn  (/)  /\  ran  (/)  C_  A ) )
83, 6, 7mpbir2an 945 1  |-  (/) : (/) --> A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    C_ wss 3166   (/)c0 3460   ran crn 4676    Fn wfn 5266   -->wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275
This theorem is referenced by:  f00  5467  f0bi  5468  f10  5556  map0g  6775  ac6sfi  6995  wrd0  11019  gsum0g  13228  0met  14856
  Copyright terms: Public domain W3C validator