ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpima1 Unicode version

Theorem xpima1 5129
Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
xpima1  |-  ( ( A  i^i  C )  =  (/)  ->  ( ( A  X.  B )
" C )  =  (/) )

Proof of Theorem xpima1
StepHypRef Expression
1 df-ima 4688 . . 3  |-  ( ( A  X.  B )
" C )  =  ran  ( ( A  X.  B )  |`  C )
2 df-res 4687 . . . 4  |-  ( ( A  X.  B )  |`  C )  =  ( ( A  X.  B
)  i^i  ( C  X.  _V ) )
32rneqi 4906 . . 3  |-  ran  (
( A  X.  B
)  |`  C )  =  ran  ( ( A  X.  B )  i^i  ( C  X.  _V ) )
4 inxp 4812 . . . 4  |-  ( ( A  X.  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  C
)  X.  ( B  i^i  _V ) )
54rneqi 4906 . . 3  |-  ran  (
( A  X.  B
)  i^i  ( C  X.  _V ) )  =  ran  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )
61, 3, 53eqtri 2230 . 2  |-  ( ( A  X.  B )
" C )  =  ran  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )
7 xpeq1 4689 . . . 4  |-  ( ( A  i^i  C )  =  (/)  ->  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )  =  (
(/)  X.  ( B  i^i  _V ) ) )
8 0xp 4755 . . . 4  |-  ( (/)  X.  ( B  i^i  _V ) )  =  (/)
97, 8eqtrdi 2254 . . 3  |-  ( ( A  i^i  C )  =  (/)  ->  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )  =  (/) )
10 rneq 4905 . . . 4  |-  ( ( ( A  i^i  C
)  X.  ( B  i^i  _V ) )  =  (/)  ->  ran  (
( A  i^i  C
)  X.  ( B  i^i  _V ) )  =  ran  (/) )
11 rn0 4934 . . . 4  |-  ran  (/)  =  (/)
1210, 11eqtrdi 2254 . . 3  |-  ( ( ( A  i^i  C
)  X.  ( B  i^i  _V ) )  =  (/)  ->  ran  (
( A  i^i  C
)  X.  ( B  i^i  _V ) )  =  (/) )
139, 12syl 14 . 2  |-  ( ( A  i^i  C )  =  (/)  ->  ran  (
( A  i^i  C
)  X.  ( B  i^i  _V ) )  =  (/) )
146, 13eqtrid 2250 1  |-  ( ( A  i^i  C )  =  (/)  ->  ( ( A  X.  B )
" C )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   _Vcvv 2772    i^i cin 3165   (/)c0 3460    X. cxp 4673   ran crn 4676    |` cres 4677   "cima 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator