ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnoprab2 Unicode version

Theorem rnoprab2 5962
Description: The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.)
Assertion
Ref Expression
rnoprab2  |-  ran  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  =  {
z  |  E. x  e.  A  E. y  e.  B  ph }
Distinct variable groups:    y, A    x, y, z
Allowed substitution hints:    ph( x, y, z)    A( x, z)    B( x, y, z)

Proof of Theorem rnoprab2
StepHypRef Expression
1 rnoprab 5961 . 2  |-  ran  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  =  {
z  |  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
2 r2ex 2497 . . 3  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) )
32abbii 2293 . 2  |-  { z  |  E. x  e.  A  E. y  e.  B  ph }  =  { z  |  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
41, 3eqtr4i 2201 1  |-  ran  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  =  {
z  |  E. x  e.  A  E. y  e.  B  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163   E.wrex 2456   ran crn 4629   {coprab 5879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-cnv 4636  df-dm 4638  df-rn 4639  df-oprab 5882
This theorem is referenced by:  rnmpo  5988
  Copyright terms: Public domain W3C validator