ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnoprab2 Unicode version

Theorem rnoprab2 6002
Description: The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.)
Assertion
Ref Expression
rnoprab2  |-  ran  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  =  {
z  |  E. x  e.  A  E. y  e.  B  ph }
Distinct variable groups:    y, A    x, y, z
Allowed substitution hints:    ph( x, y, z)    A( x, z)    B( x, y, z)

Proof of Theorem rnoprab2
StepHypRef Expression
1 rnoprab 6001 . 2  |-  ran  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  =  {
z  |  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
2 r2ex 2514 . . 3  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) )
32abbii 2309 . 2  |-  { z  |  E. x  e.  A  E. y  e.  B  ph }  =  { z  |  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
41, 3eqtr4i 2217 1  |-  ran  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  =  {
z  |  E. x  e.  A  E. y  e.  B  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   E.wrex 2473   ran crn 4660   {coprab 5919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667  df-dm 4669  df-rn 4670  df-oprab 5922
This theorem is referenced by:  rnmpo  6029
  Copyright terms: Public domain W3C validator