Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnoprab2 Unicode version

Theorem rnoprab2 5787
 Description: The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.)
Assertion
Ref Expression
rnoprab2
Distinct variable groups:   ,   ,,
Allowed substitution hints:   (,,)   (,)   (,,)

Proof of Theorem rnoprab2
StepHypRef Expression
1 rnoprab 5786 . 2
2 r2ex 2414 . . 3
32abbii 2215 . 2
41, 3eqtr4i 2123 1
 Colors of variables: wff set class Syntax hints:   wa 103   wceq 1299  wex 1436   wcel 1448  cab 2086  wrex 2376   crn 4478  coprab 5707 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069 This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-cnv 4485  df-dm 4487  df-rn 4488  df-oprab 5710 This theorem is referenced by:  rnmpo  5813
 Copyright terms: Public domain W3C validator