ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmoprab Unicode version

Theorem reldmoprab 5935
Description: The domain of an operation class abstraction is a relation. (Contributed by NM, 17-Mar-1995.)
Assertion
Ref Expression
reldmoprab  |-  Rel  dom  {
<. <. x ,  y
>. ,  z >.  | 
ph }
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem reldmoprab
StepHypRef Expression
1 dmoprab 5931 . 2  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. x ,  y >.  |  E. z ph }
21relopabi 4735 1  |-  Rel  dom  {
<. <. x ,  y
>. ,  z >.  | 
ph }
Colors of variables: wff set class
Syntax hints:   E.wex 1485   dom cdm 4609   Rel wrel 4614   {coprab 5851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-xp 4615  df-rel 4616  df-dm 4619  df-oprab 5854
This theorem is referenced by:  oprabss  5936  reldmmpo  5961  tposoprab  6256
  Copyright terms: Public domain W3C validator