ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnmpo Unicode version

Theorem rnmpo 5952
Description: The range of an operation given by the maps-to notation. (Contributed by FL, 20-Jun-2011.)
Hypothesis
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
rnmpo  |-  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
Distinct variable groups:    y, z, A   
z, B    z, C    z, F    x, y, z
Allowed substitution hints:    A( x)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem rnmpo
StepHypRef Expression
1 rngop.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
2 df-mpo 5847 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
31, 2eqtri 2186 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
43rneqi 4832 . 2  |-  ran  F  =  ran  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
5 rnoprab2 5926 . 2  |-  ran  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
64, 5eqtri 2186 1  |-  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   E.wrex 2445   ran crn 4605   {coprab 5843    e. cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612  df-dm 4614  df-rn 4615  df-oprab 5846  df-mpo 5847
This theorem is referenced by:  elrnmpog  5954  elrnmpo  5955  ralrnmpo  5956  rexrnmpo  5957  mpoexw  6181  txuni2  12906  txbas  12908  txrest  12926
  Copyright terms: Public domain W3C validator