Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltbtwnnqq | Unicode version |
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by Jim Kingdon, 24-Sep-2019.) |
Ref | Expression |
---|---|
ltbtwnnqq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7306 | . . . . 5 | |
2 | 1 | brel 4656 | . . . 4 |
3 | 2 | simpld 111 | . . 3 |
4 | ltexnqi 7350 | . . 3 | |
5 | nsmallnq 7354 | . . . . . 6 | |
6 | 1 | brel 4656 | . . . . . . . . . . . . . . 15 |
7 | 6 | simpld 111 | . . . . . . . . . . . . . 14 |
8 | ltaddnq 7348 | . . . . . . . . . . . . . 14 | |
9 | 7, 8 | sylan2 284 | . . . . . . . . . . . . 13 |
10 | 9 | ancoms 266 | . . . . . . . . . . . 12 |
11 | 10 | adantr 274 | . . . . . . . . . . 11 |
12 | ltanqi 7343 | . . . . . . . . . . . . 13 | |
13 | 12 | adantr 274 | . . . . . . . . . . . 12 |
14 | breq2 3986 | . . . . . . . . . . . . 13 | |
15 | 14 | adantl 275 | . . . . . . . . . . . 12 |
16 | 13, 15 | mpbid 146 | . . . . . . . . . . 11 |
17 | addclnq 7316 | . . . . . . . . . . . . . . 15 | |
18 | 7, 17 | sylan2 284 | . . . . . . . . . . . . . 14 |
19 | 18 | ancoms 266 | . . . . . . . . . . . . 13 |
20 | 19 | adantr 274 | . . . . . . . . . . . 12 |
21 | breq2 3986 | . . . . . . . . . . . . . 14 | |
22 | breq1 3985 | . . . . . . . . . . . . . 14 | |
23 | 21, 22 | anbi12d 465 | . . . . . . . . . . . . 13 |
24 | 23 | adantl 275 | . . . . . . . . . . . 12 |
25 | 20, 24 | rspcedv 2834 | . . . . . . . . . . 11 |
26 | 11, 16, 25 | mp2and 430 | . . . . . . . . . 10 |
27 | 26 | 3impa 1184 | . . . . . . . . 9 |
28 | 27 | 3coml 1200 | . . . . . . . 8 |
29 | 28 | 3expia 1195 | . . . . . . 7 |
30 | 29 | exlimdv 1807 | . . . . . 6 |
31 | 5, 30 | syl5 32 | . . . . 5 |
32 | 31 | impancom 258 | . . . 4 |
33 | 32 | rexlimdva 2583 | . . 3 |
34 | 3, 4, 33 | sylc 62 | . 2 |
35 | ltsonq 7339 | . . . 4 | |
36 | 35, 1 | sotri 4999 | . . 3 |
37 | 36 | rexlimivw 2579 | . 2 |
38 | 34, 37 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wrex 2445 class class class wbr 3982 (class class class)co 5842 cnq 7221 cplq 7223 cltq 7226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 |
This theorem is referenced by: ltbtwnnq 7357 nqprrnd 7484 appdivnq 7504 ltnqpr 7534 ltnqpri 7535 recexprlemopl 7566 recexprlemopu 7568 cauappcvgprlemopl 7587 cauappcvgprlemopu 7589 cauappcvgprlem2 7601 caucvgprlemopl 7610 caucvgprlemopu 7612 caucvgprlem2 7621 suplocexprlemru 7660 suplocexprlemloc 7662 |
Copyright terms: Public domain | W3C validator |