ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltbtwnnqq Unicode version

Theorem ltbtwnnqq 7416
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by Jim Kingdon, 24-Sep-2019.)
Assertion
Ref Expression
ltbtwnnqq  |-  ( A 
<Q  B  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltbtwnnqq
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7366 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4680 . . . 4  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
32simpld 112 . . 3  |-  ( A 
<Q  B  ->  A  e. 
Q. )
4 ltexnqi 7410 . . 3  |-  ( A 
<Q  B  ->  E. y  e.  Q.  ( A  +Q  y )  =  B )
5 nsmallnq 7414 . . . . . 6  |-  ( y  e.  Q.  ->  E. z 
z  <Q  y )
61brel 4680 . . . . . . . . . . . . . . 15  |-  ( z 
<Q  y  ->  ( z  e.  Q.  /\  y  e.  Q. ) )
76simpld 112 . . . . . . . . . . . . . 14  |-  ( z 
<Q  y  ->  z  e. 
Q. )
8 ltaddnq 7408 . . . . . . . . . . . . . 14  |-  ( ( A  e.  Q.  /\  z  e.  Q. )  ->  A  <Q  ( A  +Q  z ) )
97, 8sylan2 286 . . . . . . . . . . . . 13  |-  ( ( A  e.  Q.  /\  z  <Q  y )  ->  A  <Q  ( A  +Q  z ) )
109ancoms 268 . . . . . . . . . . . 12  |-  ( ( z  <Q  y  /\  A  e.  Q. )  ->  A  <Q  ( A  +Q  z ) )
1110adantr 276 . . . . . . . . . . 11  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  A  <Q  ( A  +Q  z ) )
12 ltanqi 7403 . . . . . . . . . . . . 13  |-  ( ( z  <Q  y  /\  A  e.  Q. )  ->  ( A  +Q  z
)  <Q  ( A  +Q  y ) )
1312adantr 276 . . . . . . . . . . . 12  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( A  +Q  z )  <Q  ( A  +Q  y ) )
14 breq2 4009 . . . . . . . . . . . . 13  |-  ( ( A  +Q  y )  =  B  ->  (
( A  +Q  z
)  <Q  ( A  +Q  y )  <->  ( A  +Q  z )  <Q  B ) )
1514adantl 277 . . . . . . . . . . . 12  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( ( A  +Q  z )  <Q 
( A  +Q  y
)  <->  ( A  +Q  z )  <Q  B ) )
1613, 15mpbid 147 . . . . . . . . . . 11  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( A  +Q  z )  <Q  B )
17 addclnq 7376 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  Q.  /\  z  e.  Q. )  ->  ( A  +Q  z
)  e.  Q. )
187, 17sylan2 286 . . . . . . . . . . . . . 14  |-  ( ( A  e.  Q.  /\  z  <Q  y )  -> 
( A  +Q  z
)  e.  Q. )
1918ancoms 268 . . . . . . . . . . . . 13  |-  ( ( z  <Q  y  /\  A  e.  Q. )  ->  ( A  +Q  z
)  e.  Q. )
2019adantr 276 . . . . . . . . . . . 12  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( A  +Q  z )  e.  Q. )
21 breq2 4009 . . . . . . . . . . . . . 14  |-  ( x  =  ( A  +Q  z )  ->  ( A  <Q  x  <->  A  <Q  ( A  +Q  z ) ) )
22 breq1 4008 . . . . . . . . . . . . . 14  |-  ( x  =  ( A  +Q  z )  ->  (
x  <Q  B  <->  ( A  +Q  z )  <Q  B ) )
2321, 22anbi12d 473 . . . . . . . . . . . . 13  |-  ( x  =  ( A  +Q  z )  ->  (
( A  <Q  x  /\  x  <Q  B )  <-> 
( A  <Q  ( A  +Q  z )  /\  ( A  +Q  z
)  <Q  B ) ) )
2423adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( z  <Q 
y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  /\  x  =  ( A  +Q  z ) )  -> 
( ( A  <Q  x  /\  x  <Q  B )  <-> 
( A  <Q  ( A  +Q  z )  /\  ( A  +Q  z
)  <Q  B ) ) )
2520, 24rspcedv 2847 . . . . . . . . . . 11  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( ( A  <Q  ( A  +Q  z )  /\  ( A  +Q  z )  <Q  B )  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
2611, 16, 25mp2and 433 . . . . . . . . . 10  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
27263impa 1194 . . . . . . . . 9  |-  ( ( z  <Q  y  /\  A  e.  Q.  /\  ( A  +Q  y )  =  B )  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
28273coml 1210 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  ( A  +Q  y
)  =  B  /\  z  <Q  y )  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
29283expia 1205 . . . . . . 7  |-  ( ( A  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( z  <Q 
y  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
3029exlimdv 1819 . . . . . 6  |-  ( ( A  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( E. z 
z  <Q  y  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
315, 30syl5 32 . . . . 5  |-  ( ( A  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( y  e. 
Q.  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
3231impancom 260 . . . 4  |-  ( ( A  e.  Q.  /\  y  e.  Q. )  ->  ( ( A  +Q  y )  =  B  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
3332rexlimdva 2594 . . 3  |-  ( A  e.  Q.  ->  ( E. y  e.  Q.  ( A  +Q  y
)  =  B  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
343, 4, 33sylc 62 . 2  |-  ( A 
<Q  B  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
35 ltsonq 7399 . . . 4  |-  <Q  Or  Q.
3635, 1sotri 5026 . . 3  |-  ( ( A  <Q  x  /\  x  <Q  B )  ->  A  <Q  B )
3736rexlimivw 2590 . 2  |-  ( E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B )  ->  A  <Q  B )
3834, 37impbii 126 1  |-  ( A 
<Q  B  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   E.wrex 2456   class class class wbr 4005  (class class class)co 5877   Q.cnq 7281    +Q cplq 7283    <Q cltq 7286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354
This theorem is referenced by:  ltbtwnnq  7417  nqprrnd  7544  appdivnq  7564  ltnqpr  7594  ltnqpri  7595  recexprlemopl  7626  recexprlemopu  7628  cauappcvgprlemopl  7647  cauappcvgprlemopu  7649  cauappcvgprlem2  7661  caucvgprlemopl  7670  caucvgprlemopu  7672  caucvgprlem2  7681  suplocexprlemru  7720  suplocexprlemloc  7722
  Copyright terms: Public domain W3C validator