ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltbtwnnqq Unicode version

Theorem ltbtwnnqq 7477
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by Jim Kingdon, 24-Sep-2019.)
Assertion
Ref Expression
ltbtwnnqq  |-  ( A 
<Q  B  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltbtwnnqq
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7427 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4712 . . . 4  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
32simpld 112 . . 3  |-  ( A 
<Q  B  ->  A  e. 
Q. )
4 ltexnqi 7471 . . 3  |-  ( A 
<Q  B  ->  E. y  e.  Q.  ( A  +Q  y )  =  B )
5 nsmallnq 7475 . . . . . 6  |-  ( y  e.  Q.  ->  E. z 
z  <Q  y )
61brel 4712 . . . . . . . . . . . . . . 15  |-  ( z 
<Q  y  ->  ( z  e.  Q.  /\  y  e.  Q. ) )
76simpld 112 . . . . . . . . . . . . . 14  |-  ( z 
<Q  y  ->  z  e. 
Q. )
8 ltaddnq 7469 . . . . . . . . . . . . . 14  |-  ( ( A  e.  Q.  /\  z  e.  Q. )  ->  A  <Q  ( A  +Q  z ) )
97, 8sylan2 286 . . . . . . . . . . . . 13  |-  ( ( A  e.  Q.  /\  z  <Q  y )  ->  A  <Q  ( A  +Q  z ) )
109ancoms 268 . . . . . . . . . . . 12  |-  ( ( z  <Q  y  /\  A  e.  Q. )  ->  A  <Q  ( A  +Q  z ) )
1110adantr 276 . . . . . . . . . . 11  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  A  <Q  ( A  +Q  z ) )
12 ltanqi 7464 . . . . . . . . . . . . 13  |-  ( ( z  <Q  y  /\  A  e.  Q. )  ->  ( A  +Q  z
)  <Q  ( A  +Q  y ) )
1312adantr 276 . . . . . . . . . . . 12  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( A  +Q  z )  <Q  ( A  +Q  y ) )
14 breq2 4034 . . . . . . . . . . . . 13  |-  ( ( A  +Q  y )  =  B  ->  (
( A  +Q  z
)  <Q  ( A  +Q  y )  <->  ( A  +Q  z )  <Q  B ) )
1514adantl 277 . . . . . . . . . . . 12  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( ( A  +Q  z )  <Q 
( A  +Q  y
)  <->  ( A  +Q  z )  <Q  B ) )
1613, 15mpbid 147 . . . . . . . . . . 11  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( A  +Q  z )  <Q  B )
17 addclnq 7437 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  Q.  /\  z  e.  Q. )  ->  ( A  +Q  z
)  e.  Q. )
187, 17sylan2 286 . . . . . . . . . . . . . 14  |-  ( ( A  e.  Q.  /\  z  <Q  y )  -> 
( A  +Q  z
)  e.  Q. )
1918ancoms 268 . . . . . . . . . . . . 13  |-  ( ( z  <Q  y  /\  A  e.  Q. )  ->  ( A  +Q  z
)  e.  Q. )
2019adantr 276 . . . . . . . . . . . 12  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( A  +Q  z )  e.  Q. )
21 breq2 4034 . . . . . . . . . . . . . 14  |-  ( x  =  ( A  +Q  z )  ->  ( A  <Q  x  <->  A  <Q  ( A  +Q  z ) ) )
22 breq1 4033 . . . . . . . . . . . . . 14  |-  ( x  =  ( A  +Q  z )  ->  (
x  <Q  B  <->  ( A  +Q  z )  <Q  B ) )
2321, 22anbi12d 473 . . . . . . . . . . . . 13  |-  ( x  =  ( A  +Q  z )  ->  (
( A  <Q  x  /\  x  <Q  B )  <-> 
( A  <Q  ( A  +Q  z )  /\  ( A  +Q  z
)  <Q  B ) ) )
2423adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( z  <Q 
y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  /\  x  =  ( A  +Q  z ) )  -> 
( ( A  <Q  x  /\  x  <Q  B )  <-> 
( A  <Q  ( A  +Q  z )  /\  ( A  +Q  z
)  <Q  B ) ) )
2520, 24rspcedv 2869 . . . . . . . . . . 11  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( ( A  <Q  ( A  +Q  z )  /\  ( A  +Q  z )  <Q  B )  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
2611, 16, 25mp2and 433 . . . . . . . . . 10  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
27263impa 1196 . . . . . . . . 9  |-  ( ( z  <Q  y  /\  A  e.  Q.  /\  ( A  +Q  y )  =  B )  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
28273coml 1212 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  ( A  +Q  y
)  =  B  /\  z  <Q  y )  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
29283expia 1207 . . . . . . 7  |-  ( ( A  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( z  <Q 
y  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
3029exlimdv 1830 . . . . . 6  |-  ( ( A  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( E. z 
z  <Q  y  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
315, 30syl5 32 . . . . 5  |-  ( ( A  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( y  e. 
Q.  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
3231impancom 260 . . . 4  |-  ( ( A  e.  Q.  /\  y  e.  Q. )  ->  ( ( A  +Q  y )  =  B  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
3332rexlimdva 2611 . . 3  |-  ( A  e.  Q.  ->  ( E. y  e.  Q.  ( A  +Q  y
)  =  B  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
343, 4, 33sylc 62 . 2  |-  ( A 
<Q  B  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
35 ltsonq 7460 . . . 4  |-  <Q  Or  Q.
3635, 1sotri 5062 . . 3  |-  ( ( A  <Q  x  /\  x  <Q  B )  ->  A  <Q  B )
3736rexlimivw 2607 . 2  |-  ( E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B )  ->  A  <Q  B )
3834, 37impbii 126 1  |-  ( A 
<Q  B  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473   class class class wbr 4030  (class class class)co 5919   Q.cnq 7342    +Q cplq 7344    <Q cltq 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415
This theorem is referenced by:  ltbtwnnq  7478  nqprrnd  7605  appdivnq  7625  ltnqpr  7655  ltnqpri  7656  recexprlemopl  7687  recexprlemopu  7689  cauappcvgprlemopl  7708  cauappcvgprlemopu  7710  cauappcvgprlem2  7722  caucvgprlemopl  7731  caucvgprlemopu  7733  caucvgprlem2  7742  suplocexprlemru  7781  suplocexprlemloc  7783
  Copyright terms: Public domain W3C validator