ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enomnilem Unicode version

Theorem enomnilem 7018
Description: Lemma for enomni 7019. One direction of the biconditional. (Contributed by Jim Kingdon, 13-Jul-2022.)
Assertion
Ref Expression
enomnilem  |-  ( A 
~~  B  ->  ( A  e. Omni  ->  B  e. Omni
) )

Proof of Theorem enomnilem
Dummy variables  f  g  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6649 . . . . . . 7  |-  ( A 
~~  B  <->  E. h  h : A -1-1-onto-> B )
21biimpi 119 . . . . . 6  |-  ( A 
~~  B  ->  E. h  h : A -1-1-onto-> B )
32ad2antrr 480 . . . . 5  |-  ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  ->  E. h  h : A
-1-1-onto-> B )
4 fveq1 5428 . . . . . . . . . 10  |-  ( f  =  ( g  o.  h )  ->  (
f `  x )  =  ( ( g  o.  h ) `  x ) )
54eqeq1d 2149 . . . . . . . . 9  |-  ( f  =  ( g  o.  h )  ->  (
( f `  x
)  =  (/)  <->  ( (
g  o.  h ) `
 x )  =  (/) ) )
65rexbidv 2439 . . . . . . . 8  |-  ( f  =  ( g  o.  h )  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  <->  E. x  e.  A  ( (
g  o.  h ) `
 x )  =  (/) ) )
74eqeq1d 2149 . . . . . . . . 9  |-  ( f  =  ( g  o.  h )  ->  (
( f `  x
)  =  1o  <->  ( (
g  o.  h ) `
 x )  =  1o ) )
87ralbidv 2438 . . . . . . . 8  |-  ( f  =  ( g  o.  h )  ->  ( A. x  e.  A  ( f `  x
)  =  1o  <->  A. x  e.  A  ( (
g  o.  h ) `
 x )  =  1o ) )
96, 8orbi12d 783 . . . . . . 7  |-  ( f  =  ( g  o.  h )  ->  (
( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o )  <-> 
( E. x  e.  A  ( ( g  o.  h ) `  x )  =  (/)  \/ 
A. x  e.  A  ( ( g  o.  h ) `  x
)  =  1o ) ) )
10 isomnimap 7017 . . . . . . . . 9  |-  ( A  e. Omni  ->  ( A  e. Omni  <->  A. f  e.  ( 2o 
^m  A ) ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) )
1110ibi 175 . . . . . . . 8  |-  ( A  e. Omni  ->  A. f  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) )
1211ad3antlr 485 . . . . . . 7  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  A. f  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) )
13 simpr 109 . . . . . . . . . . 11  |-  ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  -> 
g  e.  ( 2o 
^m  B ) )
14 2onn 6425 . . . . . . . . . . . . 13  |-  2o  e.  om
15 relen 6646 . . . . . . . . . . . . . 14  |-  Rel  ~~
1615brrelex2i 4591 . . . . . . . . . . . . 13  |-  ( A 
~~  B  ->  B  e.  _V )
17 elmapg 6563 . . . . . . . . . . . . 13  |-  ( ( 2o  e.  om  /\  B  e.  _V )  ->  ( g  e.  ( 2o  ^m  B )  <-> 
g : B --> 2o ) )
1814, 16, 17sylancr 411 . . . . . . . . . . . 12  |-  ( A 
~~  B  ->  (
g  e.  ( 2o 
^m  B )  <->  g : B
--> 2o ) )
1918ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  -> 
( g  e.  ( 2o  ^m  B )  <-> 
g : B --> 2o ) )
2013, 19mpbid 146 . . . . . . . . . 10  |-  ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  -> 
g : B --> 2o )
2120adantr 274 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  g : B
--> 2o )
22 f1of 5375 . . . . . . . . . 10  |-  ( h : A -1-1-onto-> B  ->  h : A
--> B )
2322adantl 275 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  h : A
--> B )
24 fco 5296 . . . . . . . . 9  |-  ( ( g : B --> 2o  /\  h : A --> B )  ->  ( g  o.  h ) : A --> 2o )
2521, 23, 24syl2anc 409 . . . . . . . 8  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( g  o.  h ) : A --> 2o )
26 simpllr 524 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  A  e. Omni )
27 elmapg 6563 . . . . . . . . 9  |-  ( ( 2o  e.  om  /\  A  e. Omni )  ->  ( ( g  o.  h
)  e.  ( 2o 
^m  A )  <->  ( g  o.  h ) : A --> 2o ) )
2814, 26, 27sylancr 411 . . . . . . . 8  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( (
g  o.  h )  e.  ( 2o  ^m  A )  <->  ( g  o.  h ) : A --> 2o ) )
2925, 28mpbird 166 . . . . . . 7  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( g  o.  h )  e.  ( 2o  ^m  A ) )
309, 12, 29rspcdva 2798 . . . . . 6  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( E. x  e.  A  (
( g  o.  h
) `  x )  =  (/)  \/  A. x  e.  A  ( (
g  o.  h ) `
 x )  =  1o ) )
31 f1ofn 5376 . . . . . . . . . . . 12  |-  ( h : A -1-1-onto-> B  ->  h  Fn  A )
3231ad2antlr 481 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  ->  h  Fn  A )
33 fvco2 5498 . . . . . . . . . . 11  |-  ( ( h  Fn  A  /\  x  e.  A )  ->  ( ( g  o.  h ) `  x
)  =  ( g `
 ( h `  x ) ) )
3432, 33sylancom 417 . . . . . . . . . 10  |-  ( ( ( ( ( A 
~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  ->  (
( g  o.  h
) `  x )  =  ( g `  ( h `  x
) ) )
3534eqeq1d 2149 . . . . . . . . 9  |-  ( ( ( ( ( A 
~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  ->  (
( ( g  o.  h ) `  x
)  =  (/)  <->  ( g `  ( h `  x
) )  =  (/) ) )
3623ffvelrnda 5563 . . . . . . . . . 10  |-  ( ( ( ( ( A 
~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  ->  (
h `  x )  e.  B )
37 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  /\  y  =  ( h `  x ) )  -> 
y  =  ( h `
 x ) )
3837fveq2d 5433 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  /\  y  =  ( h `  x ) )  -> 
( g `  y
)  =  ( g `
 ( h `  x ) ) )
3938eqeq1d 2149 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  /\  y  =  ( h `  x ) )  -> 
( ( g `  y )  =  (/)  <->  (
g `  ( h `  x ) )  =  (/) ) )
4036, 39rspcedv 2797 . . . . . . . . 9  |-  ( ( ( ( ( A 
~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  ->  (
( g `  (
h `  x )
)  =  (/)  ->  E. y  e.  B  ( g `  y )  =  (/) ) )
4135, 40sylbid 149 . . . . . . . 8  |-  ( ( ( ( ( A 
~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  ->  (
( ( g  o.  h ) `  x
)  =  (/)  ->  E. y  e.  B  ( g `  y )  =  (/) ) )
4241rexlimdva 2552 . . . . . . 7  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( E. x  e.  A  (
( g  o.  h
) `  x )  =  (/)  ->  E. y  e.  B  ( g `  y )  =  (/) ) )
4331ad3antlr 485 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  h  Fn  A )
44 f1ocnv 5388 . . . . . . . . . . . . . 14  |-  ( h : A -1-1-onto-> B  ->  `' h : B -1-1-onto-> A )
45 f1of 5375 . . . . . . . . . . . . . 14  |-  ( `' h : B -1-1-onto-> A  ->  `' h : B --> A )
4644, 45syl 14 . . . . . . . . . . . . 13  |-  ( h : A -1-1-onto-> B  ->  `' h : B --> A )
4746ad3antlr 485 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  `' h : B --> A )
48 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  y  e.  B )
4947, 48ffvelrnd 5564 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  ( `' h `  y )  e.  A )
50 fvco2 5498 . . . . . . . . . . 11  |-  ( ( h  Fn  A  /\  ( `' h `  y )  e.  A )  -> 
( ( g  o.  h ) `  ( `' h `  y ) )  =  ( g `
 ( h `  ( `' h `  y ) ) ) )
5143, 49, 50syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  (
( g  o.  h
) `  ( `' h `  y )
)  =  ( g `
 ( h `  ( `' h `  y ) ) ) )
52 fveq2 5429 . . . . . . . . . . . 12  |-  ( x  =  ( `' h `  y )  ->  (
( g  o.  h
) `  x )  =  ( ( g  o.  h ) `  ( `' h `  y ) ) )
5352eqeq1d 2149 . . . . . . . . . . 11  |-  ( x  =  ( `' h `  y )  ->  (
( ( g  o.  h ) `  x
)  =  1o  <->  ( (
g  o.  h ) `
 ( `' h `  y ) )  =  1o ) )
54 simplr 520 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  A. x  e.  A  ( (
g  o.  h ) `
 x )  =  1o )
5553, 54, 49rspcdva 2798 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  (
( g  o.  h
) `  ( `' h `  y )
)  =  1o )
56 simpllr 524 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  h : A -1-1-onto-> B )
57 f1ocnvfv2 5687 . . . . . . . . . . . 12  |-  ( ( h : A -1-1-onto-> B  /\  y  e.  B )  ->  ( h `  ( `' h `  y ) )  =  y )
5857fveq2d 5433 . . . . . . . . . . 11  |-  ( ( h : A -1-1-onto-> B  /\  y  e.  B )  ->  ( g `  (
h `  ( `' h `  y )
) )  =  ( g `  y ) )
5956, 58sylancom 417 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  (
g `  ( h `  ( `' h `  y ) ) )  =  ( g `  y ) )
6051, 55, 593eqtr3rd 2182 . . . . . . . . 9  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  (
g `  y )  =  1o )
6160ralrimiva 2508 . . . . . . . 8  |-  ( ( ( ( ( A 
~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  ->  A. y  e.  B  ( g `  y )  =  1o )
6261ex 114 . . . . . . 7  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( A. x  e.  A  (
( g  o.  h
) `  x )  =  1o  ->  A. y  e.  B  ( g `  y )  =  1o ) )
6342, 62orim12d 776 . . . . . 6  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( ( E. x  e.  A  ( ( g  o.  h ) `  x
)  =  (/)  \/  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  ->  ( E. y  e.  B  ( g `  y
)  =  (/)  \/  A. y  e.  B  (
g `  y )  =  1o ) ) )
6430, 63mpd 13 . . . . 5  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( E. y  e.  B  (
g `  y )  =  (/)  \/  A. y  e.  B  ( g `  y )  =  1o ) )
653, 64exlimddv 1871 . . . 4  |-  ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  -> 
( E. y  e.  B  ( g `  y )  =  (/)  \/ 
A. y  e.  B  ( g `  y
)  =  1o ) )
6665ralrimiva 2508 . . 3  |-  ( ( A  ~~  B  /\  A  e. Omni )  ->  A. g  e.  ( 2o 
^m  B ) ( E. y  e.  B  ( g `  y
)  =  (/)  \/  A. y  e.  B  (
g `  y )  =  1o ) )
67 isomnimap 7017 . . . . 5  |-  ( B  e.  _V  ->  ( B  e. Omni  <->  A. g  e.  ( 2o  ^m  B ) ( E. y  e.  B  ( g `  y )  =  (/)  \/ 
A. y  e.  B  ( g `  y
)  =  1o ) ) )
6816, 67syl 14 . . . 4  |-  ( A 
~~  B  ->  ( B  e. Omni  <->  A. g  e.  ( 2o  ^m  B ) ( E. y  e.  B  ( g `  y )  =  (/)  \/ 
A. y  e.  B  ( g `  y
)  =  1o ) ) )
6968adantr 274 . . 3  |-  ( ( A  ~~  B  /\  A  e. Omni )  ->  ( B  e. Omni  <->  A. g  e.  ( 2o  ^m  B
) ( E. y  e.  B  ( g `  y )  =  (/)  \/ 
A. y  e.  B  ( g `  y
)  =  1o ) ) )
7066, 69mpbird 166 . 2  |-  ( ( A  ~~  B  /\  A  e. Omni )  ->  B  e. Omni )
7170ex 114 1  |-  ( A 
~~  B  ->  ( A  e. Omni  ->  B  e. Omni
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1332   E.wex 1469    e. wcel 1481   A.wral 2417   E.wrex 2418   _Vcvv 2689   (/)c0 3368   class class class wbr 3937   omcom 4512   `'ccnv 4546    o. ccom 4551    Fn wfn 5126   -->wf 5127   -1-1-onto->wf1o 5130   ` cfv 5131  (class class class)co 5782   1oc1o 6314   2oc2o 6315    ^m cmap 6550    ~~ cen 6640  Omnicomni 7012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1o 6321  df-2o 6322  df-map 6552  df-en 6643  df-omni 7014
This theorem is referenced by:  enomni  7019
  Copyright terms: Public domain W3C validator