ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enomnilem Unicode version

Theorem enomnilem 7240
Description: Lemma for enomni 7241. One direction of the biconditional. (Contributed by Jim Kingdon, 13-Jul-2022.)
Assertion
Ref Expression
enomnilem  |-  ( A 
~~  B  ->  ( A  e. Omni  ->  B  e. Omni
) )

Proof of Theorem enomnilem
Dummy variables  f  g  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6835 . . . . . . 7  |-  ( A 
~~  B  <->  E. h  h : A -1-1-onto-> B )
21biimpi 120 . . . . . 6  |-  ( A 
~~  B  ->  E. h  h : A -1-1-onto-> B )
32ad2antrr 488 . . . . 5  |-  ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  ->  E. h  h : A
-1-1-onto-> B )
4 fveq1 5575 . . . . . . . . . 10  |-  ( f  =  ( g  o.  h )  ->  (
f `  x )  =  ( ( g  o.  h ) `  x ) )
54eqeq1d 2214 . . . . . . . . 9  |-  ( f  =  ( g  o.  h )  ->  (
( f `  x
)  =  (/)  <->  ( (
g  o.  h ) `
 x )  =  (/) ) )
65rexbidv 2507 . . . . . . . 8  |-  ( f  =  ( g  o.  h )  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  <->  E. x  e.  A  ( (
g  o.  h ) `
 x )  =  (/) ) )
74eqeq1d 2214 . . . . . . . . 9  |-  ( f  =  ( g  o.  h )  ->  (
( f `  x
)  =  1o  <->  ( (
g  o.  h ) `
 x )  =  1o ) )
87ralbidv 2506 . . . . . . . 8  |-  ( f  =  ( g  o.  h )  ->  ( A. x  e.  A  ( f `  x
)  =  1o  <->  A. x  e.  A  ( (
g  o.  h ) `
 x )  =  1o ) )
96, 8orbi12d 795 . . . . . . 7  |-  ( f  =  ( g  o.  h )  ->  (
( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o )  <-> 
( E. x  e.  A  ( ( g  o.  h ) `  x )  =  (/)  \/ 
A. x  e.  A  ( ( g  o.  h ) `  x
)  =  1o ) ) )
10 isomnimap 7239 . . . . . . . . 9  |-  ( A  e. Omni  ->  ( A  e. Omni  <->  A. f  e.  ( 2o 
^m  A ) ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) )
1110ibi 176 . . . . . . . 8  |-  ( A  e. Omni  ->  A. f  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) )
1211ad3antlr 493 . . . . . . 7  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  A. f  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) )
13 simpr 110 . . . . . . . . . . 11  |-  ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  -> 
g  e.  ( 2o 
^m  B ) )
14 2onn 6607 . . . . . . . . . . . . 13  |-  2o  e.  om
15 relen 6831 . . . . . . . . . . . . . 14  |-  Rel  ~~
1615brrelex2i 4719 . . . . . . . . . . . . 13  |-  ( A 
~~  B  ->  B  e.  _V )
17 elmapg 6748 . . . . . . . . . . . . 13  |-  ( ( 2o  e.  om  /\  B  e.  _V )  ->  ( g  e.  ( 2o  ^m  B )  <-> 
g : B --> 2o ) )
1814, 16, 17sylancr 414 . . . . . . . . . . . 12  |-  ( A 
~~  B  ->  (
g  e.  ( 2o 
^m  B )  <->  g : B
--> 2o ) )
1918ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  -> 
( g  e.  ( 2o  ^m  B )  <-> 
g : B --> 2o ) )
2013, 19mpbid 147 . . . . . . . . . 10  |-  ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  -> 
g : B --> 2o )
2120adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  g : B
--> 2o )
22 f1of 5522 . . . . . . . . . 10  |-  ( h : A -1-1-onto-> B  ->  h : A
--> B )
2322adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  h : A
--> B )
24 fco 5441 . . . . . . . . 9  |-  ( ( g : B --> 2o  /\  h : A --> B )  ->  ( g  o.  h ) : A --> 2o )
2521, 23, 24syl2anc 411 . . . . . . . 8  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( g  o.  h ) : A --> 2o )
26 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  A  e. Omni )
27 elmapg 6748 . . . . . . . . 9  |-  ( ( 2o  e.  om  /\  A  e. Omni )  ->  ( ( g  o.  h
)  e.  ( 2o 
^m  A )  <->  ( g  o.  h ) : A --> 2o ) )
2814, 26, 27sylancr 414 . . . . . . . 8  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( (
g  o.  h )  e.  ( 2o  ^m  A )  <->  ( g  o.  h ) : A --> 2o ) )
2925, 28mpbird 167 . . . . . . 7  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( g  o.  h )  e.  ( 2o  ^m  A ) )
309, 12, 29rspcdva 2882 . . . . . 6  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( E. x  e.  A  (
( g  o.  h
) `  x )  =  (/)  \/  A. x  e.  A  ( (
g  o.  h ) `
 x )  =  1o ) )
31 f1ofn 5523 . . . . . . . . . . . 12  |-  ( h : A -1-1-onto-> B  ->  h  Fn  A )
3231ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  ->  h  Fn  A )
33 fvco2 5648 . . . . . . . . . . 11  |-  ( ( h  Fn  A  /\  x  e.  A )  ->  ( ( g  o.  h ) `  x
)  =  ( g `
 ( h `  x ) ) )
3432, 33sylancom 420 . . . . . . . . . 10  |-  ( ( ( ( ( A 
~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  ->  (
( g  o.  h
) `  x )  =  ( g `  ( h `  x
) ) )
3534eqeq1d 2214 . . . . . . . . 9  |-  ( ( ( ( ( A 
~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  ->  (
( ( g  o.  h ) `  x
)  =  (/)  <->  ( g `  ( h `  x
) )  =  (/) ) )
3623ffvelcdmda 5715 . . . . . . . . . 10  |-  ( ( ( ( ( A 
~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  ->  (
h `  x )  e.  B )
37 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  /\  y  =  ( h `  x ) )  -> 
y  =  ( h `
 x ) )
3837fveq2d 5580 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  /\  y  =  ( h `  x ) )  -> 
( g `  y
)  =  ( g `
 ( h `  x ) ) )
3938eqeq1d 2214 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  /\  y  =  ( h `  x ) )  -> 
( ( g `  y )  =  (/)  <->  (
g `  ( h `  x ) )  =  (/) ) )
4036, 39rspcedv 2881 . . . . . . . . 9  |-  ( ( ( ( ( A 
~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  ->  (
( g `  (
h `  x )
)  =  (/)  ->  E. y  e.  B  ( g `  y )  =  (/) ) )
4135, 40sylbid 150 . . . . . . . 8  |-  ( ( ( ( ( A 
~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  ->  (
( ( g  o.  h ) `  x
)  =  (/)  ->  E. y  e.  B  ( g `  y )  =  (/) ) )
4241rexlimdva 2623 . . . . . . 7  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( E. x  e.  A  (
( g  o.  h
) `  x )  =  (/)  ->  E. y  e.  B  ( g `  y )  =  (/) ) )
4331ad3antlr 493 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  h  Fn  A )
44 f1ocnv 5535 . . . . . . . . . . . . . 14  |-  ( h : A -1-1-onto-> B  ->  `' h : B -1-1-onto-> A )
45 f1of 5522 . . . . . . . . . . . . . 14  |-  ( `' h : B -1-1-onto-> A  ->  `' h : B --> A )
4644, 45syl 14 . . . . . . . . . . . . 13  |-  ( h : A -1-1-onto-> B  ->  `' h : B --> A )
4746ad3antlr 493 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  `' h : B --> A )
48 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  y  e.  B )
4947, 48ffvelcdmd 5716 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  ( `' h `  y )  e.  A )
50 fvco2 5648 . . . . . . . . . . 11  |-  ( ( h  Fn  A  /\  ( `' h `  y )  e.  A )  -> 
( ( g  o.  h ) `  ( `' h `  y ) )  =  ( g `
 ( h `  ( `' h `  y ) ) ) )
5143, 49, 50syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  (
( g  o.  h
) `  ( `' h `  y )
)  =  ( g `
 ( h `  ( `' h `  y ) ) ) )
52 fveq2 5576 . . . . . . . . . . . 12  |-  ( x  =  ( `' h `  y )  ->  (
( g  o.  h
) `  x )  =  ( ( g  o.  h ) `  ( `' h `  y ) ) )
5352eqeq1d 2214 . . . . . . . . . . 11  |-  ( x  =  ( `' h `  y )  ->  (
( ( g  o.  h ) `  x
)  =  1o  <->  ( (
g  o.  h ) `
 ( `' h `  y ) )  =  1o ) )
54 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  A. x  e.  A  ( (
g  o.  h ) `
 x )  =  1o )
5553, 54, 49rspcdva 2882 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  (
( g  o.  h
) `  ( `' h `  y )
)  =  1o )
56 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  h : A -1-1-onto-> B )
57 f1ocnvfv2 5847 . . . . . . . . . . . 12  |-  ( ( h : A -1-1-onto-> B  /\  y  e.  B )  ->  ( h `  ( `' h `  y ) )  =  y )
5857fveq2d 5580 . . . . . . . . . . 11  |-  ( ( h : A -1-1-onto-> B  /\  y  e.  B )  ->  ( g `  (
h `  ( `' h `  y )
) )  =  ( g `  y ) )
5956, 58sylancom 420 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  (
g `  ( h `  ( `' h `  y ) ) )  =  ( g `  y ) )
6051, 55, 593eqtr3rd 2247 . . . . . . . . 9  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  (
g `  y )  =  1o )
6160ralrimiva 2579 . . . . . . . 8  |-  ( ( ( ( ( A 
~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  ->  A. y  e.  B  ( g `  y )  =  1o )
6261ex 115 . . . . . . 7  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( A. x  e.  A  (
( g  o.  h
) `  x )  =  1o  ->  A. y  e.  B  ( g `  y )  =  1o ) )
6342, 62orim12d 788 . . . . . 6  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( ( E. x  e.  A  ( ( g  o.  h ) `  x
)  =  (/)  \/  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  ->  ( E. y  e.  B  ( g `  y
)  =  (/)  \/  A. y  e.  B  (
g `  y )  =  1o ) ) )
6430, 63mpd 13 . . . . 5  |-  ( ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( E. y  e.  B  (
g `  y )  =  (/)  \/  A. y  e.  B  ( g `  y )  =  1o ) )
653, 64exlimddv 1922 . . . 4  |-  ( ( ( A  ~~  B  /\  A  e. Omni )  /\  g  e.  ( 2o  ^m  B ) )  -> 
( E. y  e.  B  ( g `  y )  =  (/)  \/ 
A. y  e.  B  ( g `  y
)  =  1o ) )
6665ralrimiva 2579 . . 3  |-  ( ( A  ~~  B  /\  A  e. Omni )  ->  A. g  e.  ( 2o 
^m  B ) ( E. y  e.  B  ( g `  y
)  =  (/)  \/  A. y  e.  B  (
g `  y )  =  1o ) )
67 isomnimap 7239 . . . . 5  |-  ( B  e.  _V  ->  ( B  e. Omni  <->  A. g  e.  ( 2o  ^m  B ) ( E. y  e.  B  ( g `  y )  =  (/)  \/ 
A. y  e.  B  ( g `  y
)  =  1o ) ) )
6816, 67syl 14 . . . 4  |-  ( A 
~~  B  ->  ( B  e. Omni  <->  A. g  e.  ( 2o  ^m  B ) ( E. y  e.  B  ( g `  y )  =  (/)  \/ 
A. y  e.  B  ( g `  y
)  =  1o ) ) )
6968adantr 276 . . 3  |-  ( ( A  ~~  B  /\  A  e. Omni )  ->  ( B  e. Omni  <->  A. g  e.  ( 2o  ^m  B
) ( E. y  e.  B  ( g `  y )  =  (/)  \/ 
A. y  e.  B  ( g `  y
)  =  1o ) ) )
7066, 69mpbird 167 . 2  |-  ( ( A  ~~  B  /\  A  e. Omni )  ->  B  e. Omni )
7170ex 115 1  |-  ( A 
~~  B  ->  ( A  e. Omni  ->  B  e. Omni
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485   _Vcvv 2772   (/)c0 3460   class class class wbr 4044   omcom 4638   `'ccnv 4674    o. ccom 4679    Fn wfn 5266   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5944   1oc1o 6495   2oc2o 6496    ^m cmap 6735    ~~ cen 6825  Omnicomni 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1o 6502  df-2o 6503  df-map 6737  df-en 6828  df-omni 7237
This theorem is referenced by:  enomni  7241
  Copyright terms: Public domain W3C validator