ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axarch Unicode version

Theorem axarch 7699
Description: Archimedean axiom. The Archimedean property is more naturally stated once we have defined  NN. Unless we find another way to state it, we'll just use the right hand side of dfnn2 8722 in stating what we mean by "natural number" in the context of this axiom.

This construction-dependent theorem should not be referenced directly; instead, use ax-arch 7739. (Contributed by Jim Kingdon, 22-Apr-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axarch  |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  <RR  n )
Distinct variable group:    A, n, x, y

Proof of Theorem axarch
Dummy variables  l  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7636 . . 3  |-  ( A  e.  RR  <->  E. z  e.  R.  <. z ,  0R >.  =  A )
21biimpi 119 . 2  |-  ( A  e.  RR  ->  E. z  e.  R.  <. z ,  0R >.  =  A )
3 archsr 7590 . . . 4  |-  ( z  e.  R.  ->  E. w  e.  N.  z  <R  [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
43ad2antrl 481 . . 3  |-  ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  ->  E. w  e.  N.  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
5 simplrr 525 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  /\  ( w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  ->  <. z ,  0R >.  =  A
)
6 simprr 521 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  /\  ( w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  ->  z  <R  [
<. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
7 ltresr 7647 . . . . . 6  |-  ( <.
z ,  0R >.  <RR  <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. 
<->  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
86, 7sylibr 133 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  /\  ( w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  ->  <. z ,  0R >.  <RR  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
95, 8eqbrtrrd 3952 . . . 4  |-  ( ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  /\  ( w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  ->  A  <RR  <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
10 pitonn 7656 . . . . . 6  |-  ( w  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
1110ad2antrl 481 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  /\  ( w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
12 simpr 109 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  ( z  e.  R.  /\  <. z ,  0R >.  =  A ) )  /\  (
w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  /\  n  =  <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  ->  n  =  <. [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
1312breq2d 3941 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  ( z  e.  R.  /\  <. z ,  0R >.  =  A ) )  /\  (
w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  /\  n  =  <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  ->  ( A  <RR  n  <->  A  <RR  <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
1411, 13rspcedv 2793 . . . 4  |-  ( ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  /\  ( w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  ->  ( A  <RR 
<. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  <RR  n ) )
159, 14mpd 13 . . 3  |-  ( ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  /\  ( w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  <RR  n )
164, 15rexlimddv 2554 . 2  |-  ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  <RR  n )
172, 16rexlimddv 2554 1  |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  <RR  n )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   <.cop 3530   |^|cint 3771   class class class wbr 3929  (class class class)co 5774   1oc1o 6306   [cec 6427   N.cnpi 7080    ~Q ceq 7087    <Q cltq 7093   1Pc1p 7100    +P. cpp 7101    ~R cer 7104   R.cnr 7105   0Rc0r 7106    <R cltr 7111   RRcr 7619   1c1 7621    + caddc 7623    <RR cltrr 7624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-i1p 7275  df-iplp 7276  df-iltp 7278  df-enr 7534  df-nr 7535  df-plr 7536  df-ltr 7538  df-0r 7539  df-1r 7540  df-c 7626  df-1 7628  df-r 7630  df-add 7631  df-lt 7633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator