ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexnqq Unicode version

Theorem ltexnqq 7521
Description: Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by Jim Kingdon, 23-Sep-2019.)
Assertion
Ref Expression
ltexnqq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  E. x  e.  Q.  ( A  +Q  x )  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltexnqq
Dummy variables  f  g  h  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7461 . . 3  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 breq1 4047 . . . 4  |-  ( [
<. y ,  z >. ]  ~Q  =  A  -> 
( [ <. y ,  z >. ]  ~Q  <Q  [ <. w ,  v
>. ]  ~Q  <->  A  <Q  [
<. w ,  v >. ]  ~Q  ) )
3 oveq1 5951 . . . . . 6  |-  ( [
<. y ,  z >. ]  ~Q  =  A  -> 
( [ <. y ,  z >. ]  ~Q  +Q  x )  =  ( A  +Q  x ) )
43eqeq1d 2214 . . . . 5  |-  ( [
<. y ,  z >. ]  ~Q  =  A  -> 
( ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  <->  ( A  +Q  x )  =  [ <. w ,  v >. ]  ~Q  ) )
54rexbidv 2507 . . . 4  |-  ( [
<. y ,  z >. ]  ~Q  =  A  -> 
( E. x  e. 
Q.  ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  <->  E. x  e.  Q.  ( A  +Q  x
)  =  [ <. w ,  v >. ]  ~Q  ) )
62, 5imbi12d 234 . . 3  |-  ( [
<. y ,  z >. ]  ~Q  =  A  -> 
( ( [ <. y ,  z >. ]  ~Q  <Q  [ <. w ,  v
>. ]  ~Q  ->  E. x  e.  Q.  ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  )  <->  ( A  <Q  [ <. w ,  v
>. ]  ~Q  ->  E. x  e.  Q.  ( A  +Q  x )  =  [ <. w ,  v >. ]  ~Q  ) ) )
7 breq2 4048 . . . 4  |-  ( [
<. w ,  v >. ]  ~Q  =  B  -> 
( A  <Q  [ <. w ,  v >. ]  ~Q  <->  A 
<Q  B ) )
8 eqeq2 2215 . . . . 5  |-  ( [
<. w ,  v >. ]  ~Q  =  B  -> 
( ( A  +Q  x )  =  [ <. w ,  v >. ]  ~Q  <->  ( A  +Q  x )  =  B ) )
98rexbidv 2507 . . . 4  |-  ( [
<. w ,  v >. ]  ~Q  =  B  -> 
( E. x  e. 
Q.  ( A  +Q  x )  =  [ <. w ,  v >. ]  ~Q  <->  E. x  e.  Q.  ( A  +Q  x
)  =  B ) )
107, 9imbi12d 234 . . 3  |-  ( [
<. w ,  v >. ]  ~Q  =  B  -> 
( ( A  <Q  [
<. w ,  v >. ]  ~Q  ->  E. x  e.  Q.  ( A  +Q  x )  =  [ <. w ,  v >. ]  ~Q  )  <->  ( A  <Q  B  ->  E. x  e.  Q.  ( A  +Q  x )  =  B ) ) )
11 ordpipqqs 7487 . . . 4  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. y ,  z >. ]  ~Q  <Q  [ <. w ,  v >. ]  ~Q  <->  ( y  .N  v ) 
<N  ( z  .N  w
) ) )
12 mulclpi 7441 . . . . . . . . 9  |-  ( ( y  e.  N.  /\  v  e.  N. )  ->  ( y  .N  v
)  e.  N. )
13 mulclpi 7441 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  .N  w
)  e.  N. )
1412, 13anim12i 338 . . . . . . . 8  |-  ( ( ( y  e.  N.  /\  v  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
y  .N  v )  e.  N.  /\  (
z  .N  w )  e.  N. ) )
1514an42s 589 . . . . . . 7  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  v )  e.  N.  /\  (
z  .N  w )  e.  N. ) )
16 ltexpi 7450 . . . . . . 7  |-  ( ( ( y  .N  v
)  e.  N.  /\  ( z  .N  w
)  e.  N. )  ->  ( ( y  .N  v )  <N  (
z  .N  w )  <->  E. u  e.  N.  ( ( y  .N  v )  +N  u
)  =  ( z  .N  w ) ) )
1715, 16syl 14 . . . . . 6  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  v ) 
<N  ( z  .N  w
)  <->  E. u  e.  N.  ( ( y  .N  v )  +N  u
)  =  ( z  .N  w ) ) )
18 df-rex 2490 . . . . . 6  |-  ( E. u  e.  N.  (
( y  .N  v
)  +N  u )  =  ( z  .N  w )  <->  E. u
( u  e.  N.  /\  ( ( y  .N  v )  +N  u
)  =  ( z  .N  w ) ) )
1917, 18bitrdi 196 . . . . 5  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  v ) 
<N  ( z  .N  w
)  <->  E. u ( u  e.  N.  /\  (
( y  .N  v
)  +N  u )  =  ( z  .N  w ) ) ) )
20 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  ( y  e.  N.  /\  z  e.  N. ) )
21 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  u  e. 
N. )
22 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  z  e.  N. )
23 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  N.  /\  v  e.  N. )  ->  v  e.  N. )
2422, 23anim12i 338 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( z  e.  N.  /\  v  e. 
N. ) )
2524adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  ( z  e.  N.  /\  v  e.  N. ) )
26 mulclpi 7441 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  e.  N. )
2725, 26syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  ( z  .N  v )  e. 
N. )
2820, 21, 27jca32 310 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  ( ( y  e.  N.  /\  z  e.  N. )  /\  ( u  e.  N.  /\  ( z  .N  v
)  e.  N. )
) )
2928adantrr 479 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( ( y  e. 
N.  /\  z  e.  N. )  /\  (
u  e.  N.  /\  ( z  .N  v
)  e.  N. )
) )
30 addpipqqs 7483 . . . . . . . . . 10  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( u  e.  N.  /\  ( z  .N  v
)  e.  N. )
)  ->  ( [ <. y ,  z >. ]  ~Q  +Q  [ <. u ,  ( z  .N  v ) >. ]  ~Q  )  =  [ <. (
( y  .N  (
z  .N  v ) )  +N  ( z  .N  u ) ) ,  ( z  .N  ( z  .N  v
) ) >. ]  ~Q  )
3129, 30syl 14 . . . . . . . . 9  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( [ <. y ,  z >. ]  ~Q  +Q  [ <. u ,  ( z  .N  v )
>. ]  ~Q  )  =  [ <. ( ( y  .N  ( z  .N  v ) )  +N  ( z  .N  u
) ) ,  ( z  .N  ( z  .N  v ) )
>. ]  ~Q  )
32 simplll 533 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
y  e.  N. )
33 simpllr 534 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
z  e.  N. )
34 simplrr 536 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
v  e.  N. )
35 mulcompig 7444 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  =  ( g  .N  f ) )
3635adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  /\  ( f  e.  N.  /\  g  e.  N. )
)  ->  ( f  .N  g )  =  ( g  .N  f ) )
37 mulasspig 7445 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
3837adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  /\  ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )
)  ->  ( (
f  .N  g )  .N  h )  =  ( f  .N  (
g  .N  h ) ) )
3932, 33, 34, 36, 38caov12d 6128 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( y  .N  (
z  .N  v ) )  =  ( z  .N  ( y  .N  v ) ) )
4039oveq1d 5959 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( ( y  .N  ( z  .N  v
) )  +N  (
z  .N  u ) )  =  ( ( z  .N  ( y  .N  v ) )  +N  ( z  .N  u ) ) )
4132, 34, 12syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( y  .N  v
)  e.  N. )
42 simprl 529 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  u  e.  N. )
43 distrpig 7446 . . . . . . . . . . . . . 14  |-  ( ( z  e.  N.  /\  ( y  .N  v
)  e.  N.  /\  u  e.  N. )  ->  ( z  .N  (
( y  .N  v
)  +N  u ) )  =  ( ( z  .N  ( y  .N  v ) )  +N  ( z  .N  u ) ) )
4433, 41, 42, 43syl3anc 1250 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( z  .N  (
( y  .N  v
)  +N  u ) )  =  ( ( z  .N  ( y  .N  v ) )  +N  ( z  .N  u ) ) )
4540, 44eqtr4d 2241 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( ( y  .N  ( z  .N  v
) )  +N  (
z  .N  u ) )  =  ( z  .N  ( ( y  .N  v )  +N  u ) ) )
4645opeq1d 3825 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  <. ( ( y  .N  ( z  .N  v
) )  +N  (
z  .N  u ) ) ,  ( z  .N  ( z  .N  v ) ) >.  =  <. ( z  .N  ( ( y  .N  v )  +N  u
) ) ,  ( z  .N  ( z  .N  v ) )
>. )
4746eceq1d 6656 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  [ <. ( ( y  .N  ( z  .N  v ) )  +N  ( z  .N  u
) ) ,  ( z  .N  ( z  .N  v ) )
>. ]  ~Q  =  [ <. ( z  .N  (
( y  .N  v
)  +N  u ) ) ,  ( z  .N  ( z  .N  v ) ) >. ]  ~Q  )
48 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  z  e. 
N. )
4912ad2ant2rl 511 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( y  .N  v )  e.  N. )
50 addclpi 7440 . . . . . . . . . . . . . 14  |-  ( ( ( y  .N  v
)  e.  N.  /\  u  e.  N. )  ->  ( ( y  .N  v )  +N  u
)  e.  N. )
5149, 50sylan 283 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  ( ( y  .N  v )  +N  u )  e. 
N. )
5248, 51, 273jca 1180 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  ( z  e.  N.  /\  (
( y  .N  v
)  +N  u )  e.  N.  /\  (
z  .N  v )  e.  N. ) )
5352adantrr 479 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( z  e.  N.  /\  ( ( y  .N  v )  +N  u
)  e.  N.  /\  ( z  .N  v
)  e.  N. )
)
54 mulcanenqec 7499 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  ( ( y  .N  v )  +N  u
)  e.  N.  /\  ( z  .N  v
)  e.  N. )  ->  [ <. ( z  .N  ( ( y  .N  v )  +N  u
) ) ,  ( z  .N  ( z  .N  v ) )
>. ]  ~Q  =  [ <. ( ( y  .N  v )  +N  u
) ,  ( z  .N  v ) >. ]  ~Q  )
5553, 54syl 14 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  [ <. ( z  .N  ( ( y  .N  v )  +N  u
) ) ,  ( z  .N  ( z  .N  v ) )
>. ]  ~Q  =  [ <. ( ( y  .N  v )  +N  u
) ,  ( z  .N  v ) >. ]  ~Q  )
5647, 55eqtrd 2238 . . . . . . . . 9  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  [ <. ( ( y  .N  ( z  .N  v ) )  +N  ( z  .N  u
) ) ,  ( z  .N  ( z  .N  v ) )
>. ]  ~Q  =  [ <. ( ( y  .N  v )  +N  u
) ,  ( z  .N  v ) >. ]  ~Q  )
57 3anass 985 . . . . . . . . . . . . . 14  |-  ( ( z  e.  N.  /\  w  e.  N.  /\  v  e.  N. )  <->  ( z  e.  N.  /\  ( w  e.  N.  /\  v  e.  N. ) ) )
5857biimpri 133 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( z  e.  N.  /\  w  e. 
N.  /\  v  e.  N. ) )
5958adantll 476 . . . . . . . . . . . 12  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( z  e.  N.  /\  w  e. 
N.  /\  v  e.  N. ) )
6059anim1i 340 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( (
y  .N  v )  +N  u )  =  ( z  .N  w
) )  ->  (
( z  e.  N.  /\  w  e.  N.  /\  v  e.  N. )  /\  ( ( y  .N  v )  +N  u
)  =  ( z  .N  w ) ) )
6160adantrl 478 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( ( z  e. 
N.  /\  w  e.  N.  /\  v  e.  N. )  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w ) ) )
62 opeq1 3819 . . . . . . . . . . . 12  |-  ( ( ( y  .N  v
)  +N  u )  =  ( z  .N  w )  ->  <. (
( y  .N  v
)  +N  u ) ,  ( z  .N  v ) >.  =  <. ( z  .N  w ) ,  ( z  .N  v ) >. )
6362eceq1d 6656 . . . . . . . . . . 11  |-  ( ( ( y  .N  v
)  +N  u )  =  ( z  .N  w )  ->  [ <. ( ( y  .N  v
)  +N  u ) ,  ( z  .N  v ) >. ]  ~Q  =  [ <. ( z  .N  w ) ,  ( z  .N  v )
>. ]  ~Q  )
64 mulcanenqec 7499 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N.  /\  v  e.  N. )  ->  [ <. ( z  .N  w ) ,  ( z  .N  v ) >. ]  ~Q  =  [ <. w ,  v
>. ]  ~Q  )
6563, 64sylan9eqr 2260 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N.  /\  v  e.  N. )  /\  ( ( y  .N  v )  +N  u
)  =  ( z  .N  w ) )  ->  [ <. (
( y  .N  v
)  +N  u ) ,  ( z  .N  v ) >. ]  ~Q  =  [ <. w ,  v
>. ]  ~Q  )
6661, 65syl 14 . . . . . . . . 9  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  [ <. ( ( y  .N  v )  +N  u ) ,  ( z  .N  v )
>. ]  ~Q  =  [ <. w ,  v >. ]  ~Q  )
6731, 56, 663eqtrd 2242 . . . . . . . 8  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( [ <. y ,  z >. ]  ~Q  +Q  [ <. u ,  ( z  .N  v )
>. ]  ~Q  )  =  [ <. w ,  v
>. ]  ~Q  )
6833, 34, 26syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( z  .N  v
)  e.  N. )
69 opelxpi 4707 . . . . . . . . . . . 12  |-  ( ( u  e.  N.  /\  ( z  .N  v
)  e.  N. )  -> 
<. u ,  ( z  .N  v ) >.  e.  ( N.  X.  N. ) )
70 enqex 7473 . . . . . . . . . . . . 13  |-  ~Q  e.  _V
7170ecelqsi 6676 . . . . . . . . . . . 12  |-  ( <.
u ,  ( z  .N  v ) >.  e.  ( N.  X.  N. )  ->  [ <. u ,  ( z  .N  v ) >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
7269, 71syl 14 . . . . . . . . . . 11  |-  ( ( u  e.  N.  /\  ( z  .N  v
)  e.  N. )  ->  [ <. u ,  ( z  .N  v )
>. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
7342, 68, 72syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  [ <. u ,  ( z  .N  v )
>. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
7473, 1eleqtrrdi 2299 . . . . . . . . 9  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  [ <. u ,  ( z  .N  v )
>. ]  ~Q  e.  Q. )
75 oveq2 5952 . . . . . . . . . . 11  |-  ( x  =  [ <. u ,  ( z  .N  v ) >. ]  ~Q  ->  ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  ( [ <. y ,  z
>. ]  ~Q  +Q  [ <. u ,  ( z  .N  v ) >. ]  ~Q  ) )
7675eqeq1d 2214 . . . . . . . . . 10  |-  ( x  =  [ <. u ,  ( z  .N  v ) >. ]  ~Q  ->  ( ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  <->  ( [ <. y ,  z >. ]  ~Q  +Q  [ <. u ,  ( z  .N  v )
>. ]  ~Q  )  =  [ <. w ,  v
>. ]  ~Q  ) )
7776adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( y  e.  N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  /\  x  =  [ <. u ,  ( z  .N  v ) >. ]  ~Q  )  ->  ( ( [
<. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  <->  ( [ <. y ,  z
>. ]  ~Q  +Q  [ <. u ,  ( z  .N  v ) >. ]  ~Q  )  =  [ <. w ,  v >. ]  ~Q  ) )
7874, 77rspcedv 2881 . . . . . . . 8  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( ( [ <. y ,  z >. ]  ~Q  +Q  [ <. u ,  ( z  .N  v )
>. ]  ~Q  )  =  [ <. w ,  v
>. ]  ~Q  ->  E. x  e.  Q.  ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  ) )
7967, 78mpd 13 . . . . . . 7  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  E. x  e.  Q.  ( [ <. y ,  z
>. ]  ~Q  +Q  x
)  =  [ <. w ,  v >. ]  ~Q  )
8079ex 115 . . . . . 6  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
u  e.  N.  /\  ( ( y  .N  v )  +N  u
)  =  ( z  .N  w ) )  ->  E. x  e.  Q.  ( [ <. y ,  z
>. ]  ~Q  +Q  x
)  =  [ <. w ,  v >. ]  ~Q  ) )
8180exlimdv 1842 . . . . 5  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( E. u ( u  e. 
N.  /\  ( (
y  .N  v )  +N  u )  =  ( z  .N  w
) )  ->  E. x  e.  Q.  ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  ) )
8219, 81sylbid 150 . . . 4  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  v ) 
<N  ( z  .N  w
)  ->  E. x  e.  Q.  ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  ) )
8311, 82sylbid 150 . . 3  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. y ,  z >. ]  ~Q  <Q  [ <. w ,  v >. ]  ~Q  ->  E. x  e.  Q.  ( [ <. y ,  z
>. ]  ~Q  +Q  x
)  =  [ <. w ,  v >. ]  ~Q  ) )
841, 6, 10, 832ecoptocl 6710 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  ->  E. x  e.  Q.  ( A  +Q  x
)  =  B ) )
85 ltaddnq 7520 . . . . 5  |-  ( ( A  e.  Q.  /\  x  e.  Q. )  ->  A  <Q  ( A  +Q  x ) )
86 breq2 4048 . . . . 5  |-  ( ( A  +Q  x )  =  B  ->  ( A  <Q  ( A  +Q  x )  <->  A  <Q  B ) )
8785, 86syl5ibcom 155 . . . 4  |-  ( ( A  e.  Q.  /\  x  e.  Q. )  ->  ( ( A  +Q  x )  =  B  ->  A  <Q  B ) )
8887rexlimdva 2623 . . 3  |-  ( A  e.  Q.  ->  ( E. x  e.  Q.  ( A  +Q  x
)  =  B  ->  A  <Q  B ) )
8988adantr 276 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. x  e. 
Q.  ( A  +Q  x )  =  B  ->  A  <Q  B ) )
9084, 89impbid 129 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  E. x  e.  Q.  ( A  +Q  x )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   E.wrex 2485   <.cop 3636   class class class wbr 4044    X. cxp 4673  (class class class)co 5944   [cec 6618   /.cqs 6619   N.cnpi 7385    +N cpli 7386    .N cmi 7387    <N clti 7388    ~Q ceq 7392   Q.cnq 7393    +Q cplq 7395    <Q cltq 7398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-ltnqqs 7466
This theorem is referenced by:  ltexnqi  7522  addlocpr  7649  ltexprlemopl  7714  ltexprlemopu  7716  ltexprlemrl  7723  ltexprlemru  7725  cauappcvgprlemopl  7759  caucvgprlemopl  7782  caucvgprprlemopl  7810
  Copyright terms: Public domain W3C validator