Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sloteq | Unicode version |
Description: Equality theorem for the Slot construction. The converse holds if (or ) is a set. (Contributed by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
sloteq | Slot Slot |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5486 | . . 3 | |
2 | 1 | mpteq2dv 4073 | . 2 |
3 | df-slot 12398 | . 2 Slot | |
4 | df-slot 12398 | . 2 Slot | |
5 | 2, 3, 4 | 3eqtr4g 2224 | 1 Slot Slot |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cvv 2726 cmpt 4043 cfv 5188 Slot cslot 12393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-iota 5153 df-fv 5196 df-slot 12398 |
This theorem is referenced by: ndxid 12418 |
Copyright terms: Public domain | W3C validator |