ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sloteq Unicode version

Theorem sloteq 12432
Description: Equality theorem for the Slot construction. The converse holds if  A (or  B) is a set. (Contributed by BJ, 27-Dec-2021.)
Assertion
Ref Expression
sloteq  |-  ( A  =  B  -> Slot  A  = Slot 
B )

Proof of Theorem sloteq
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq2 5507 . . 3  |-  ( A  =  B  ->  (
f `  A )  =  ( f `  B ) )
21mpteq2dv 4089 . 2  |-  ( A  =  B  ->  (
f  e.  _V  |->  ( f `  A ) )  =  ( f  e.  _V  |->  ( f `
 B ) ) )
3 df-slot 12431 . 2  |- Slot  A  =  ( f  e.  _V  |->  ( f `  A
) )
4 df-slot 12431 . 2  |- Slot  B  =  ( f  e.  _V  |->  ( f `  B
) )
52, 3, 43eqtr4g 2233 1  |-  ( A  =  B  -> Slot  A  = Slot 
B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   _Vcvv 2735    |-> cmpt 4059   ` cfv 5208  Slot cslot 12426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-iota 5170  df-fv 5216  df-slot 12431
This theorem is referenced by:  ndxid  12451
  Copyright terms: Public domain W3C validator