ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sloteq Unicode version

Theorem sloteq 12421
Description: Equality theorem for the Slot construction. The converse holds if  A (or  B) is a set. (Contributed by BJ, 27-Dec-2021.)
Assertion
Ref Expression
sloteq  |-  ( A  =  B  -> Slot  A  = Slot 
B )

Proof of Theorem sloteq
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq2 5496 . . 3  |-  ( A  =  B  ->  (
f `  A )  =  ( f `  B ) )
21mpteq2dv 4080 . 2  |-  ( A  =  B  ->  (
f  e.  _V  |->  ( f `  A ) )  =  ( f  e.  _V  |->  ( f `
 B ) ) )
3 df-slot 12420 . 2  |- Slot  A  =  ( f  e.  _V  |->  ( f `  A
) )
4 df-slot 12420 . 2  |- Slot  B  =  ( f  e.  _V  |->  ( f `  B
) )
52, 3, 43eqtr4g 2228 1  |-  ( A  =  B  -> Slot  A  = Slot 
B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   _Vcvv 2730    |-> cmpt 4050   ` cfv 5198  Slot cslot 12415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-iota 5160  df-fv 5206  df-slot 12420
This theorem is referenced by:  ndxid  12440
  Copyright terms: Public domain W3C validator