| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxid | Unicode version | ||
| Description: A structure component
extractor is defined by its own index. This
theorem, together with strslfv 12992 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| ndxarg.1 |
|
| ndxarg.2 |
|
| Ref | Expression |
|---|---|
| ndxid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.1 |
. . . 4
| |
| 2 | ndxarg.2 |
. . . 4
| |
| 3 | 1, 2 | ndxarg 12970 |
. . 3
|
| 4 | 3 | eqcomi 2211 |
. 2
|
| 5 | sloteq 12952 |
. . 3
| |
| 6 | 1, 5 | eqtrid 2252 |
. 2
|
| 7 | 4, 6 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fv 5298 df-inn 9072 df-ndx 12950 df-slot 12951 |
| This theorem is referenced by: ndxslid 12972 strndxid 12975 baseid 13001 plusgid 13057 mulridx 13078 starvid 13087 scaid 13099 vscaid 13105 ipid 13117 tsetid 13134 pleid 13148 ocid 13159 dsid 13163 unifid 13174 homid 13181 ccoid 13184 edgfid 15720 |
| Copyright terms: Public domain | W3C validator |