ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndxid Unicode version

Theorem ndxid 12702
Description: A structure component extractor is defined by its own index. This theorem, together with strslfv 12723 below, is useful for avoiding direct reference to the hard-coded numeric index in component extractor definitions, such as the  1 in df-base 12684, making it easier to change should the need arise.

(Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.)

Hypotheses
Ref Expression
ndxarg.1  |-  E  = Slot 
N
ndxarg.2  |-  N  e.  NN
Assertion
Ref Expression
ndxid  |-  E  = Slot  ( E `  ndx )

Proof of Theorem ndxid
StepHypRef Expression
1 ndxarg.1 . . . 4  |-  E  = Slot 
N
2 ndxarg.2 . . . 4  |-  N  e.  NN
31, 2ndxarg 12701 . . 3  |-  ( E `
 ndx )  =  N
43eqcomi 2200 . 2  |-  N  =  ( E `  ndx )
5 sloteq 12683 . . 3  |-  ( N  =  ( E `  ndx )  -> Slot  N  = Slot  ( E `  ndx ) )
61, 5eqtrid 2241 . 2  |-  ( N  =  ( E `  ndx )  ->  E  = Slot  ( E `  ndx ) )
74, 6ax-mp 5 1  |-  E  = Slot  ( E `  ndx )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   ` cfv 5258   NNcn 8990   ndxcnx 12675  Slot cslot 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-inn 8991  df-ndx 12681  df-slot 12682
This theorem is referenced by:  ndxslid  12703  strndxid  12706  baseid  12732  plusgid  12788  mulridx  12808  starvid  12817  scaid  12829  vscaid  12835  ipid  12847  tsetid  12864  pleid  12878  dsid  12889  unifid  12900  homid  12906  ccoid  12908
  Copyright terms: Public domain W3C validator