| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxid | Unicode version | ||
| Description: A structure component
extractor is defined by its own index. This
theorem, together with strslfv 12910 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| ndxarg.1 |
|
| ndxarg.2 |
|
| Ref | Expression |
|---|---|
| ndxid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.1 |
. . . 4
| |
| 2 | ndxarg.2 |
. . . 4
| |
| 3 | 1, 2 | ndxarg 12888 |
. . 3
|
| 4 | 3 | eqcomi 2209 |
. 2
|
| 5 | sloteq 12870 |
. . 3
| |
| 6 | 1, 5 | eqtrid 2250 |
. 2
|
| 7 | 4, 6 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fun 5274 df-fv 5280 df-inn 9039 df-ndx 12868 df-slot 12869 |
| This theorem is referenced by: ndxslid 12890 strndxid 12893 baseid 12919 plusgid 12975 mulridx 12996 starvid 13005 scaid 13017 vscaid 13023 ipid 13035 tsetid 13052 pleid 13066 ocid 13077 dsid 13081 unifid 13092 homid 13099 ccoid 13102 edgfid 15638 |
| Copyright terms: Public domain | W3C validator |