![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ndxid | Unicode version |
Description: A structure component
extractor is defined by its own index. This
theorem, together with strslfv 12507 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the ![]() (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
ndxarg.1 |
![]() ![]() ![]() ![]() |
ndxarg.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ndxid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndxarg.1 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | ndxarg.2 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | 1, 2 | ndxarg 12485 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | eqcomi 2181 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | sloteq 12467 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 1, 5 | eqtrid 2222 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-cnex 7902 ax-resscn 7903 ax-1re 7905 ax-addrcl 7908 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-iota 5179 df-fun 5219 df-fv 5225 df-inn 8920 df-ndx 12465 df-slot 12466 |
This theorem is referenced by: ndxslid 12487 strndxid 12490 baseid 12516 plusgid 12569 mulridx 12589 starvid 12598 scaid 12610 vscaid 12616 ipid 12628 tsetid 12642 pleid 12656 dsid 12667 unifid 12678 homid 12684 ccoid 12686 |
Copyright terms: Public domain | W3C validator |