| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxid | Unicode version | ||
| Description: A structure component
extractor is defined by its own index. This
theorem, together with strslfv 13077 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| ndxarg.1 |
|
| ndxarg.2 |
|
| Ref | Expression |
|---|---|
| ndxid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.1 |
. . . 4
| |
| 2 | ndxarg.2 |
. . . 4
| |
| 3 | 1, 2 | ndxarg 13055 |
. . 3
|
| 4 | 3 | eqcomi 2233 |
. 2
|
| 5 | sloteq 13037 |
. . 3
| |
| 6 | 1, 5 | eqtrid 2274 |
. 2
|
| 7 | 4, 6 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-inn 9111 df-ndx 13035 df-slot 13036 |
| This theorem is referenced by: ndxslid 13057 strndxid 13060 baseid 13086 plusgid 13143 mulridx 13164 starvid 13173 scaid 13185 vscaid 13191 ipid 13203 tsetid 13220 pleid 13234 ocid 13245 dsid 13249 unifid 13260 homid 13267 ccoid 13270 edgfid 15807 |
| Copyright terms: Public domain | W3C validator |