ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndxid Unicode version

Theorem ndxid 12971
Description: A structure component extractor is defined by its own index. This theorem, together with strslfv 12992 below, is useful for avoiding direct reference to the hard-coded numeric index in component extractor definitions, such as the  1 in df-base 12953, making it easier to change should the need arise.

(Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.)

Hypotheses
Ref Expression
ndxarg.1  |-  E  = Slot 
N
ndxarg.2  |-  N  e.  NN
Assertion
Ref Expression
ndxid  |-  E  = Slot  ( E `  ndx )

Proof of Theorem ndxid
StepHypRef Expression
1 ndxarg.1 . . . 4  |-  E  = Slot 
N
2 ndxarg.2 . . . 4  |-  N  e.  NN
31, 2ndxarg 12970 . . 3  |-  ( E `
 ndx )  =  N
43eqcomi 2211 . 2  |-  N  =  ( E `  ndx )
5 sloteq 12952 . . 3  |-  ( N  =  ( E `  ndx )  -> Slot  N  = Slot  ( E `  ndx ) )
61, 5eqtrid 2252 . 2  |-  ( N  =  ( E `  ndx )  ->  E  = Slot  ( E `  ndx ) )
74, 6ax-mp 5 1  |-  E  = Slot  ( E `  ndx )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178   ` cfv 5290   NNcn 9071   ndxcnx 12944  Slot cslot 12946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fv 5298  df-inn 9072  df-ndx 12950  df-slot 12951
This theorem is referenced by:  ndxslid  12972  strndxid  12975  baseid  13001  plusgid  13057  mulridx  13078  starvid  13087  scaid  13099  vscaid  13105  ipid  13117  tsetid  13134  pleid  13148  ocid  13159  dsid  13163  unifid  13174  homid  13181  ccoid  13184  edgfid  15720
  Copyright terms: Public domain W3C validator