ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sloteq GIF version

Theorem sloteq 12399
Description: Equality theorem for the Slot construction. The converse holds if 𝐴 (or 𝐵) is a set. (Contributed by BJ, 27-Dec-2021.)
Assertion
Ref Expression
sloteq (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵)

Proof of Theorem sloteq
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5486 . . 3 (𝐴 = 𝐵 → (𝑓𝐴) = (𝑓𝐵))
21mpteq2dv 4073 . 2 (𝐴 = 𝐵 → (𝑓 ∈ V ↦ (𝑓𝐴)) = (𝑓 ∈ V ↦ (𝑓𝐵)))
3 df-slot 12398 . 2 Slot 𝐴 = (𝑓 ∈ V ↦ (𝑓𝐴))
4 df-slot 12398 . 2 Slot 𝐵 = (𝑓 ∈ V ↦ (𝑓𝐵))
52, 3, 43eqtr4g 2224 1 (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  Vcvv 2726  cmpt 4043  cfv 5188  Slot cslot 12393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-iota 5153  df-fv 5196  df-slot 12398
This theorem is referenced by:  ndxid  12418
  Copyright terms: Public domain W3C validator