| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sloteq | GIF version | ||
| Description: Equality theorem for the Slot construction. The converse holds if 𝐴 (or 𝐵) is a set. (Contributed by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| sloteq | ⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5627 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑓‘𝐴) = (𝑓‘𝐵)) | |
| 2 | 1 | mpteq2dv 4175 | . 2 ⊢ (𝐴 = 𝐵 → (𝑓 ∈ V ↦ (𝑓‘𝐴)) = (𝑓 ∈ V ↦ (𝑓‘𝐵))) |
| 3 | df-slot 13036 | . 2 ⊢ Slot 𝐴 = (𝑓 ∈ V ↦ (𝑓‘𝐴)) | |
| 4 | df-slot 13036 | . 2 ⊢ Slot 𝐵 = (𝑓 ∈ V ↦ (𝑓‘𝐵)) | |
| 5 | 2, 3, 4 | 3eqtr4g 2287 | 1 ⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 Vcvv 2799 ↦ cmpt 4145 ‘cfv 5318 Slot cslot 13031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-iota 5278 df-fv 5326 df-slot 13036 |
| This theorem is referenced by: ndxid 13056 |
| Copyright terms: Public domain | W3C validator |