ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sloteq GIF version

Theorem sloteq 12469
Description: Equality theorem for the Slot construction. The converse holds if 𝐴 (or 𝐵) is a set. (Contributed by BJ, 27-Dec-2021.)
Assertion
Ref Expression
sloteq (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵)

Proof of Theorem sloteq
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5517 . . 3 (𝐴 = 𝐵 → (𝑓𝐴) = (𝑓𝐵))
21mpteq2dv 4096 . 2 (𝐴 = 𝐵 → (𝑓 ∈ V ↦ (𝑓𝐴)) = (𝑓 ∈ V ↦ (𝑓𝐵)))
3 df-slot 12468 . 2 Slot 𝐴 = (𝑓 ∈ V ↦ (𝑓𝐴))
4 df-slot 12468 . 2 Slot 𝐵 = (𝑓 ∈ V ↦ (𝑓𝐵))
52, 3, 43eqtr4g 2235 1 (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  Vcvv 2739  cmpt 4066  cfv 5218  Slot cslot 12463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-iota 5180  df-fv 5226  df-slot 12468
This theorem is referenced by:  ndxid  12488
  Copyright terms: Public domain W3C validator