Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unsnfidcex | Unicode version |
Description: The condition in unsnfi 6884. This is intended to show that unsnfi 6884 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.) |
Ref | Expression |
---|---|
unsnfidcex | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6727 | . . . . 5 | |
2 | 1 | biimpi 119 | . . . 4 |
3 | 2 | 3ad2ant1 1008 | . . 3 |
4 | isfi 6727 | . . . . . . 7 | |
5 | 4 | biimpi 119 | . . . . . 6 |
6 | 5 | 3ad2ant3 1010 | . . . . 5 |
7 | 6 | adantr 274 | . . . 4 |
8 | simprr 522 | . . . . . . . . . 10 | |
9 | 8 | ad3antrrr 484 | . . . . . . . . 9 |
10 | simplr 520 | . . . . . . . . 9 | |
11 | 9, 10 | breqtrrd 4010 | . . . . . . . 8 |
12 | simprr 522 | . . . . . . . . . 10 | |
13 | 12 | ad2antrr 480 | . . . . . . . . 9 |
14 | 13 | ensymd 6749 | . . . . . . . 8 |
15 | entr 6750 | . . . . . . . 8 | |
16 | 11, 14, 15 | syl2anc 409 | . . . . . . 7 |
17 | simp1 987 | . . . . . . . . 9 | |
18 | 17 | ad4antr 486 | . . . . . . . 8 |
19 | simpr 109 | . . . . . . . . 9 | |
20 | simp2 988 | . . . . . . . . . 10 | |
21 | 20 | ad4antr 486 | . . . . . . . . 9 |
22 | 19, 21 | eldifd 3126 | . . . . . . . 8 |
23 | php5fin 6848 | . . . . . . . 8 | |
24 | 18, 22, 23 | syl2anc 409 | . . . . . . 7 |
25 | 16, 24 | pm2.65da 651 | . . . . . 6 |
26 | 25 | orcd 723 | . . . . 5 |
27 | 8 | ad3antrrr 484 | . . . . . . . . . . 11 |
28 | 27 | ensymd 6749 | . . . . . . . . . 10 |
29 | snprc 3641 | . . . . . . . . . . . . . . 15 | |
30 | 29 | biimpi 119 | . . . . . . . . . . . . . 14 |
31 | 30 | uneq2d 3276 | . . . . . . . . . . . . 13 |
32 | un0 3442 | . . . . . . . . . . . . 13 | |
33 | 31, 32 | eqtrdi 2215 | . . . . . . . . . . . 12 |
34 | 33 | adantl 275 | . . . . . . . . . . 11 |
35 | 12 | ad2antrr 480 | . . . . . . . . . . 11 |
36 | 34, 35 | eqbrtrrd 4006 | . . . . . . . . . 10 |
37 | entr 6750 | . . . . . . . . . 10 | |
38 | 28, 36, 37 | syl2anc 409 | . . . . . . . . 9 |
39 | simplrl 525 | . . . . . . . . . . 11 | |
40 | 39 | ad2antrr 480 | . . . . . . . . . 10 |
41 | simprl 521 | . . . . . . . . . . 11 | |
42 | 41 | ad2antrr 480 | . . . . . . . . . 10 |
43 | nneneq 6823 | . . . . . . . . . 10 | |
44 | 40, 42, 43 | syl2anc 409 | . . . . . . . . 9 |
45 | 38, 44 | mpbid 146 | . . . . . . . 8 |
46 | 45 | eqcomd 2171 | . . . . . . 7 |
47 | simplr 520 | . . . . . . 7 | |
48 | 46, 47 | pm2.65da 651 | . . . . . 6 |
49 | 48 | olcd 724 | . . . . 5 |
50 | nndceq 6467 | . . . . . . 7 DECID | |
51 | 41, 39, 50 | syl2anc 409 | . . . . . 6 DECID |
52 | exmiddc 826 | . . . . . 6 DECID | |
53 | 51, 52 | syl 14 | . . . . 5 |
54 | 26, 49, 53 | mpjaodan 788 | . . . 4 |
55 | 7, 54 | rexlimddv 2588 | . . 3 |
56 | 3, 55 | rexlimddv 2588 | . 2 |
57 | df-dc 825 | . 2 DECID | |
58 | 56, 57 | sylibr 133 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 w3a 968 wceq 1343 wcel 2136 wrex 2445 cvv 2726 cdif 3113 cun 3114 c0 3409 csn 3576 class class class wbr 3982 com 4567 cen 6704 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |