| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unsnfidcex | Unicode version | ||
| Description: The |
| Ref | Expression |
|---|---|
| unsnfidcex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6870 |
. . . . 5
| |
| 2 | 1 | biimpi 120 |
. . . 4
|
| 3 | 2 | 3ad2ant1 1021 |
. . 3
|
| 4 | isfi 6870 |
. . . . . . 7
| |
| 5 | 4 | biimpi 120 |
. . . . . 6
|
| 6 | 5 | 3ad2ant3 1023 |
. . . . 5
|
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | simprr 531 |
. . . . . . . . . 10
| |
| 9 | 8 | ad3antrrr 492 |
. . . . . . . . 9
|
| 10 | simplr 528 |
. . . . . . . . 9
| |
| 11 | 9, 10 | breqtrrd 4082 |
. . . . . . . 8
|
| 12 | simprr 531 |
. . . . . . . . . 10
| |
| 13 | 12 | ad2antrr 488 |
. . . . . . . . 9
|
| 14 | 13 | ensymd 6893 |
. . . . . . . 8
|
| 15 | entr 6894 |
. . . . . . . 8
| |
| 16 | 11, 14, 15 | syl2anc 411 |
. . . . . . 7
|
| 17 | simp1 1000 |
. . . . . . . . 9
| |
| 18 | 17 | ad4antr 494 |
. . . . . . . 8
|
| 19 | simpr 110 |
. . . . . . . . 9
| |
| 20 | simp2 1001 |
. . . . . . . . . 10
| |
| 21 | 20 | ad4antr 494 |
. . . . . . . . 9
|
| 22 | 19, 21 | eldifd 3180 |
. . . . . . . 8
|
| 23 | php5fin 7000 |
. . . . . . . 8
| |
| 24 | 18, 22, 23 | syl2anc 411 |
. . . . . . 7
|
| 25 | 16, 24 | pm2.65da 663 |
. . . . . 6
|
| 26 | 25 | orcd 735 |
. . . . 5
|
| 27 | 8 | ad3antrrr 492 |
. . . . . . . . . . 11
|
| 28 | 27 | ensymd 6893 |
. . . . . . . . . 10
|
| 29 | snprc 3703 |
. . . . . . . . . . . . . . 15
| |
| 30 | 29 | biimpi 120 |
. . . . . . . . . . . . . 14
|
| 31 | 30 | uneq2d 3331 |
. . . . . . . . . . . . 13
|
| 32 | un0 3498 |
. . . . . . . . . . . . 13
| |
| 33 | 31, 32 | eqtrdi 2255 |
. . . . . . . . . . . 12
|
| 34 | 33 | adantl 277 |
. . . . . . . . . . 11
|
| 35 | 12 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 36 | 34, 35 | eqbrtrrd 4078 |
. . . . . . . . . 10
|
| 37 | entr 6894 |
. . . . . . . . . 10
| |
| 38 | 28, 36, 37 | syl2anc 411 |
. . . . . . . . 9
|
| 39 | simplrl 535 |
. . . . . . . . . . 11
| |
| 40 | 39 | ad2antrr 488 |
. . . . . . . . . 10
|
| 41 | simprl 529 |
. . . . . . . . . . 11
| |
| 42 | 41 | ad2antrr 488 |
. . . . . . . . . 10
|
| 43 | nneneq 6974 |
. . . . . . . . . 10
| |
| 44 | 40, 42, 43 | syl2anc 411 |
. . . . . . . . 9
|
| 45 | 38, 44 | mpbid 147 |
. . . . . . . 8
|
| 46 | 45 | eqcomd 2212 |
. . . . . . 7
|
| 47 | simplr 528 |
. . . . . . 7
| |
| 48 | 46, 47 | pm2.65da 663 |
. . . . . 6
|
| 49 | 48 | olcd 736 |
. . . . 5
|
| 50 | nndceq 6603 |
. . . . . . 7
| |
| 51 | 41, 39, 50 | syl2anc 411 |
. . . . . 6
|
| 52 | exmiddc 838 |
. . . . . 6
| |
| 53 | 51, 52 | syl 14 |
. . . . 5
|
| 54 | 26, 49, 53 | mpjaodan 800 |
. . . 4
|
| 55 | 7, 54 | rexlimddv 2629 |
. . 3
|
| 56 | 3, 55 | rexlimddv 2629 |
. 2
|
| 57 | df-dc 837 |
. 2
| |
| 58 | 56, 57 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-1o 6520 df-er 6638 df-en 6846 df-fin 6848 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |