ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfidcex Unicode version

Theorem unsnfidcex 7038
Description: The  B  e.  V condition in unsnfi 7037. This is intended to show that unsnfi 7037 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
Assertion
Ref Expression
unsnfidcex  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  -> DECID  -.  B  e.  _V )

Proof of Theorem unsnfidcex
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6870 . . . . 5  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . . . 4  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
323ad2ant1 1021 . . 3  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  E. n  e.  om  A  ~~  n )
4 isfi 6870 . . . . . . 7  |-  ( ( A  u.  { B } )  e.  Fin  <->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
54biimpi 120 . . . . . 6  |-  ( ( A  u.  { B } )  e.  Fin  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
653ad2ant3 1023 . . . . 5  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
76adantr 276 . . . 4  |-  ( ( ( A  e.  Fin  /\ 
-.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
8 simprr 531 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\ 
-.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  A  ~~  n )
98ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  A  ~~  n )
10 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  m  =  n )
119, 10breqtrrd 4082 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  A  ~~  m )
12 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  ( A  u.  { B } )  ~~  m
)
1312ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  ( A  u.  { B } )  ~~  m
)
1413ensymd 6893 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  m  ~~  ( A  u.  { B } ) )
15 entr 6894 . . . . . . . 8  |-  ( ( A  ~~  m  /\  m  ~~  ( A  u.  { B } ) )  ->  A  ~~  ( A  u.  { B } ) )
1611, 14, 15syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  A  ~~  ( A  u.  { B } ) )
17 simp1 1000 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  A  e.  Fin )
1817ad4antr 494 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  A  e.  Fin )
19 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  B  e.  _V )
20 simp2 1001 . . . . . . . . . 10  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  -.  B  e.  A )
2120ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  -.  B  e.  A )
2219, 21eldifd 3180 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  B  e.  ( _V  \  A
) )
23 php5fin 7000 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  ->  -.  A  ~~  ( A  u.  { B }
) )
2418, 22, 23syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  -.  A  ~~  ( A  u.  { B } ) )
2516, 24pm2.65da 663 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  ->  -.  B  e.  _V )
2625orcd 735 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  ->  ( -.  B  e.  _V  \/  -.  -.  B  e. 
_V ) )
278ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  A  ~~  n
)
2827ensymd 6893 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  n  ~~  A
)
29 snprc 3703 . . . . . . . . . . . . . . 15  |-  ( -.  B  e.  _V  <->  { B }  =  (/) )
3029biimpi 120 . . . . . . . . . . . . . 14  |-  ( -.  B  e.  _V  ->  { B }  =  (/) )
3130uneq2d 3331 . . . . . . . . . . . . 13  |-  ( -.  B  e.  _V  ->  ( A  u.  { B } )  =  ( A  u.  (/) ) )
32 un0 3498 . . . . . . . . . . . . 13  |-  ( A  u.  (/) )  =  A
3331, 32eqtrdi 2255 . . . . . . . . . . . 12  |-  ( -.  B  e.  _V  ->  ( A  u.  { B } )  =  A )
3433adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  ( A  u.  { B } )  =  A )
3512ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  ( A  u.  { B } )  ~~  m )
3634, 35eqbrtrrd 4078 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  A  ~~  m
)
37 entr 6894 . . . . . . . . . 10  |-  ( ( n  ~~  A  /\  A  ~~  m )  ->  n  ~~  m )
3828, 36, 37syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  n  ~~  m
)
39 simplrl 535 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  n  e.  om )
4039ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  n  e.  om )
41 simprl 529 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  m  e.  om )
4241ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  m  e.  om )
43 nneneq 6974 . . . . . . . . . 10  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  ~~  m  <->  n  =  m ) )
4440, 42, 43syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  ( n  ~~  m 
<->  n  =  m ) )
4538, 44mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  n  =  m )
4645eqcomd 2212 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  m  =  n )
47 simplr 528 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  -.  m  =  n )
4846, 47pm2.65da 663 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  ->  -.  -.  B  e. 
_V )
4948olcd 736 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  ->  ( -.  B  e. 
_V  \/  -.  -.  B  e.  _V ) )
50 nndceq 6603 . . . . . . 7  |-  ( ( m  e.  om  /\  n  e.  om )  -> DECID  m  =  n )
5141, 39, 50syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  -> DECID  m  =  n
)
52 exmiddc 838 . . . . . 6  |-  (DECID  m  =  n  ->  ( m  =  n  \/  -.  m  =  n )
)
5351, 52syl 14 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  (
m  =  n  \/ 
-.  m  =  n ) )
5426, 49, 53mpjaodan 800 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  ( -.  B  e.  _V  \/  -.  -.  B  e. 
_V ) )
557, 54rexlimddv 2629 . . 3  |-  ( ( ( A  e.  Fin  /\ 
-.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( -.  B  e. 
_V  \/  -.  -.  B  e.  _V ) )
563, 55rexlimddv 2629 . 2  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  ( -.  B  e.  _V  \/  -.  -.  B  e.  _V )
)
57 df-dc 837 . 2  |-  (DECID  -.  B  e.  _V  <->  ( -.  B  e.  _V  \/  -.  -.  B  e.  _V )
)
5856, 57sylibr 134 1  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  -> DECID  -.  B  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2177   E.wrex 2486   _Vcvv 2773    \ cdif 3167    u. cun 3168   (/)c0 3464   {csn 3638   class class class wbr 4054   omcom 4651    ~~ cen 6843   Fincfn 6845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-1o 6520  df-er 6638  df-en 6846  df-fin 6848
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator