| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unsnfidcex | Unicode version | ||
| Description: The |
| Ref | Expression |
|---|---|
| unsnfidcex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6910 |
. . . . 5
| |
| 2 | 1 | biimpi 120 |
. . . 4
|
| 3 | 2 | 3ad2ant1 1042 |
. . 3
|
| 4 | isfi 6910 |
. . . . . . 7
| |
| 5 | 4 | biimpi 120 |
. . . . . 6
|
| 6 | 5 | 3ad2ant3 1044 |
. . . . 5
|
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | simprr 531 |
. . . . . . . . . 10
| |
| 9 | 8 | ad3antrrr 492 |
. . . . . . . . 9
|
| 10 | simplr 528 |
. . . . . . . . 9
| |
| 11 | 9, 10 | breqtrrd 4110 |
. . . . . . . 8
|
| 12 | simprr 531 |
. . . . . . . . . 10
| |
| 13 | 12 | ad2antrr 488 |
. . . . . . . . 9
|
| 14 | 13 | ensymd 6933 |
. . . . . . . 8
|
| 15 | entr 6934 |
. . . . . . . 8
| |
| 16 | 11, 14, 15 | syl2anc 411 |
. . . . . . 7
|
| 17 | simp1 1021 |
. . . . . . . . 9
| |
| 18 | 17 | ad4antr 494 |
. . . . . . . 8
|
| 19 | simpr 110 |
. . . . . . . . 9
| |
| 20 | simp2 1022 |
. . . . . . . . . 10
| |
| 21 | 20 | ad4antr 494 |
. . . . . . . . 9
|
| 22 | 19, 21 | eldifd 3207 |
. . . . . . . 8
|
| 23 | php5fin 7040 |
. . . . . . . 8
| |
| 24 | 18, 22, 23 | syl2anc 411 |
. . . . . . 7
|
| 25 | 16, 24 | pm2.65da 665 |
. . . . . 6
|
| 26 | 25 | orcd 738 |
. . . . 5
|
| 27 | 8 | ad3antrrr 492 |
. . . . . . . . . . 11
|
| 28 | 27 | ensymd 6933 |
. . . . . . . . . 10
|
| 29 | snprc 3731 |
. . . . . . . . . . . . . . 15
| |
| 30 | 29 | biimpi 120 |
. . . . . . . . . . . . . 14
|
| 31 | 30 | uneq2d 3358 |
. . . . . . . . . . . . 13
|
| 32 | un0 3525 |
. . . . . . . . . . . . 13
| |
| 33 | 31, 32 | eqtrdi 2278 |
. . . . . . . . . . . 12
|
| 34 | 33 | adantl 277 |
. . . . . . . . . . 11
|
| 35 | 12 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 36 | 34, 35 | eqbrtrrd 4106 |
. . . . . . . . . 10
|
| 37 | entr 6934 |
. . . . . . . . . 10
| |
| 38 | 28, 36, 37 | syl2anc 411 |
. . . . . . . . 9
|
| 39 | simplrl 535 |
. . . . . . . . . . 11
| |
| 40 | 39 | ad2antrr 488 |
. . . . . . . . . 10
|
| 41 | simprl 529 |
. . . . . . . . . . 11
| |
| 42 | 41 | ad2antrr 488 |
. . . . . . . . . 10
|
| 43 | nneneq 7014 |
. . . . . . . . . 10
| |
| 44 | 40, 42, 43 | syl2anc 411 |
. . . . . . . . 9
|
| 45 | 38, 44 | mpbid 147 |
. . . . . . . 8
|
| 46 | 45 | eqcomd 2235 |
. . . . . . 7
|
| 47 | simplr 528 |
. . . . . . 7
| |
| 48 | 46, 47 | pm2.65da 665 |
. . . . . 6
|
| 49 | 48 | olcd 739 |
. . . . 5
|
| 50 | nndceq 6643 |
. . . . . . 7
| |
| 51 | 41, 39, 50 | syl2anc 411 |
. . . . . 6
|
| 52 | exmiddc 841 |
. . . . . 6
| |
| 53 | 51, 52 | syl 14 |
. . . . 5
|
| 54 | 26, 49, 53 | mpjaodan 803 |
. . . 4
|
| 55 | 7, 54 | rexlimddv 2653 |
. . 3
|
| 56 | 3, 55 | rexlimddv 2653 |
. 2
|
| 57 | df-dc 840 |
. 2
| |
| 58 | 56, 57 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1o 6560 df-er 6678 df-en 6886 df-fin 6888 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |