ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfidcex Unicode version

Theorem unsnfidcex 7016
Description: The  B  e.  V condition in unsnfi 7015. This is intended to show that unsnfi 7015 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
Assertion
Ref Expression
unsnfidcex  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  -> DECID  -.  B  e.  _V )

Proof of Theorem unsnfidcex
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6851 . . . . 5  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . . . 4  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
323ad2ant1 1020 . . 3  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  E. n  e.  om  A  ~~  n )
4 isfi 6851 . . . . . . 7  |-  ( ( A  u.  { B } )  e.  Fin  <->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
54biimpi 120 . . . . . 6  |-  ( ( A  u.  { B } )  e.  Fin  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
653ad2ant3 1022 . . . . 5  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
76adantr 276 . . . 4  |-  ( ( ( A  e.  Fin  /\ 
-.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
8 simprr 531 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\ 
-.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  A  ~~  n )
98ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  A  ~~  n )
10 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  m  =  n )
119, 10breqtrrd 4071 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  A  ~~  m )
12 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  ( A  u.  { B } )  ~~  m
)
1312ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  ( A  u.  { B } )  ~~  m
)
1413ensymd 6874 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  m  ~~  ( A  u.  { B } ) )
15 entr 6875 . . . . . . . 8  |-  ( ( A  ~~  m  /\  m  ~~  ( A  u.  { B } ) )  ->  A  ~~  ( A  u.  { B } ) )
1611, 14, 15syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  A  ~~  ( A  u.  { B } ) )
17 simp1 999 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  A  e.  Fin )
1817ad4antr 494 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  A  e.  Fin )
19 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  B  e.  _V )
20 simp2 1000 . . . . . . . . . 10  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  -.  B  e.  A )
2120ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  -.  B  e.  A )
2219, 21eldifd 3175 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  B  e.  ( _V  \  A
) )
23 php5fin 6978 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  ->  -.  A  ~~  ( A  u.  { B }
) )
2418, 22, 23syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  -.  A  ~~  ( A  u.  { B } ) )
2516, 24pm2.65da 662 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  ->  -.  B  e.  _V )
2625orcd 734 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  ->  ( -.  B  e.  _V  \/  -.  -.  B  e. 
_V ) )
278ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  A  ~~  n
)
2827ensymd 6874 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  n  ~~  A
)
29 snprc 3697 . . . . . . . . . . . . . . 15  |-  ( -.  B  e.  _V  <->  { B }  =  (/) )
3029biimpi 120 . . . . . . . . . . . . . 14  |-  ( -.  B  e.  _V  ->  { B }  =  (/) )
3130uneq2d 3326 . . . . . . . . . . . . 13  |-  ( -.  B  e.  _V  ->  ( A  u.  { B } )  =  ( A  u.  (/) ) )
32 un0 3493 . . . . . . . . . . . . 13  |-  ( A  u.  (/) )  =  A
3331, 32eqtrdi 2253 . . . . . . . . . . . 12  |-  ( -.  B  e.  _V  ->  ( A  u.  { B } )  =  A )
3433adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  ( A  u.  { B } )  =  A )
3512ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  ( A  u.  { B } )  ~~  m )
3634, 35eqbrtrrd 4067 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  A  ~~  m
)
37 entr 6875 . . . . . . . . . 10  |-  ( ( n  ~~  A  /\  A  ~~  m )  ->  n  ~~  m )
3828, 36, 37syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  n  ~~  m
)
39 simplrl 535 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  n  e.  om )
4039ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  n  e.  om )
41 simprl 529 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  m  e.  om )
4241ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  m  e.  om )
43 nneneq 6953 . . . . . . . . . 10  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  ~~  m  <->  n  =  m ) )
4440, 42, 43syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  ( n  ~~  m 
<->  n  =  m ) )
4538, 44mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  n  =  m )
4645eqcomd 2210 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  m  =  n )
47 simplr 528 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  -.  m  =  n )
4846, 47pm2.65da 662 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  ->  -.  -.  B  e. 
_V )
4948olcd 735 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  ->  ( -.  B  e. 
_V  \/  -.  -.  B  e.  _V ) )
50 nndceq 6584 . . . . . . 7  |-  ( ( m  e.  om  /\  n  e.  om )  -> DECID  m  =  n )
5141, 39, 50syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  -> DECID  m  =  n
)
52 exmiddc 837 . . . . . 6  |-  (DECID  m  =  n  ->  ( m  =  n  \/  -.  m  =  n )
)
5351, 52syl 14 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  (
m  =  n  \/ 
-.  m  =  n ) )
5426, 49, 53mpjaodan 799 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  ( -.  B  e.  _V  \/  -.  -.  B  e. 
_V ) )
557, 54rexlimddv 2627 . . 3  |-  ( ( ( A  e.  Fin  /\ 
-.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( -.  B  e. 
_V  \/  -.  -.  B  e.  _V ) )
563, 55rexlimddv 2627 . 2  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  ( -.  B  e.  _V  \/  -.  -.  B  e.  _V )
)
57 df-dc 836 . 2  |-  (DECID  -.  B  e.  _V  <->  ( -.  B  e.  _V  \/  -.  -.  B  e.  _V )
)
5856, 57sylibr 134 1  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  -> DECID  -.  B  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1372    e. wcel 2175   E.wrex 2484   _Vcvv 2771    \ cdif 3162    u. cun 3163   (/)c0 3459   {csn 3632   class class class wbr 4043   omcom 4637    ~~ cen 6824   Fincfn 6826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1o 6501  df-er 6619  df-en 6827  df-fin 6829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator