ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfidcex Unicode version

Theorem unsnfidcex 7078
Description: The  B  e.  V condition in unsnfi 7077. This is intended to show that unsnfi 7077 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
Assertion
Ref Expression
unsnfidcex  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  -> DECID  -.  B  e.  _V )

Proof of Theorem unsnfidcex
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6910 . . . . 5  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . . . 4  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
323ad2ant1 1042 . . 3  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  E. n  e.  om  A  ~~  n )
4 isfi 6910 . . . . . . 7  |-  ( ( A  u.  { B } )  e.  Fin  <->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
54biimpi 120 . . . . . 6  |-  ( ( A  u.  { B } )  e.  Fin  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
653ad2ant3 1044 . . . . 5  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
76adantr 276 . . . 4  |-  ( ( ( A  e.  Fin  /\ 
-.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
8 simprr 531 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\ 
-.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  A  ~~  n )
98ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  A  ~~  n )
10 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  m  =  n )
119, 10breqtrrd 4110 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  A  ~~  m )
12 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  ( A  u.  { B } )  ~~  m
)
1312ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  ( A  u.  { B } )  ~~  m
)
1413ensymd 6933 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  m  ~~  ( A  u.  { B } ) )
15 entr 6934 . . . . . . . 8  |-  ( ( A  ~~  m  /\  m  ~~  ( A  u.  { B } ) )  ->  A  ~~  ( A  u.  { B } ) )
1611, 14, 15syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  A  ~~  ( A  u.  { B } ) )
17 simp1 1021 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  A  e.  Fin )
1817ad4antr 494 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  A  e.  Fin )
19 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  B  e.  _V )
20 simp2 1022 . . . . . . . . . 10  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  -.  B  e.  A )
2120ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  -.  B  e.  A )
2219, 21eldifd 3207 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  B  e.  ( _V  \  A
) )
23 php5fin 7040 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  ->  -.  A  ~~  ( A  u.  { B }
) )
2418, 22, 23syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  B  e.  _V )  ->  -.  A  ~~  ( A  u.  { B } ) )
2516, 24pm2.65da 665 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  ->  -.  B  e.  _V )
2625orcd 738 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  ->  ( -.  B  e.  _V  \/  -.  -.  B  e. 
_V ) )
278ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  A  ~~  n
)
2827ensymd 6933 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  n  ~~  A
)
29 snprc 3731 . . . . . . . . . . . . . . 15  |-  ( -.  B  e.  _V  <->  { B }  =  (/) )
3029biimpi 120 . . . . . . . . . . . . . 14  |-  ( -.  B  e.  _V  ->  { B }  =  (/) )
3130uneq2d 3358 . . . . . . . . . . . . 13  |-  ( -.  B  e.  _V  ->  ( A  u.  { B } )  =  ( A  u.  (/) ) )
32 un0 3525 . . . . . . . . . . . . 13  |-  ( A  u.  (/) )  =  A
3331, 32eqtrdi 2278 . . . . . . . . . . . 12  |-  ( -.  B  e.  _V  ->  ( A  u.  { B } )  =  A )
3433adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  ( A  u.  { B } )  =  A )
3512ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  ( A  u.  { B } )  ~~  m )
3634, 35eqbrtrrd 4106 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  A  ~~  m
)
37 entr 6934 . . . . . . . . . 10  |-  ( ( n  ~~  A  /\  A  ~~  m )  ->  n  ~~  m )
3828, 36, 37syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  n  ~~  m
)
39 simplrl 535 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  n  e.  om )
4039ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  n  e.  om )
41 simprl 529 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  m  e.  om )
4241ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  m  e.  om )
43 nneneq 7014 . . . . . . . . . 10  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  ~~  m  <->  n  =  m ) )
4440, 42, 43syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  ( n  ~~  m 
<->  n  =  m ) )
4538, 44mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  n  =  m )
4645eqcomd 2235 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  m  =  n )
47 simplr 528 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  -.  B  e.  _V )  ->  -.  m  =  n )
4846, 47pm2.65da 665 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  ->  -.  -.  B  e. 
_V )
4948olcd 739 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  ->  ( -.  B  e. 
_V  \/  -.  -.  B  e.  _V ) )
50 nndceq 6643 . . . . . . 7  |-  ( ( m  e.  om  /\  n  e.  om )  -> DECID  m  =  n )
5141, 39, 50syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  -> DECID  m  =  n
)
52 exmiddc 841 . . . . . 6  |-  (DECID  m  =  n  ->  ( m  =  n  \/  -.  m  =  n )
)
5351, 52syl 14 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  (
m  =  n  \/ 
-.  m  =  n ) )
5426, 49, 53mpjaodan 803 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  ->  ( -.  B  e.  _V  \/  -.  -.  B  e. 
_V ) )
557, 54rexlimddv 2653 . . 3  |-  ( ( ( A  e.  Fin  /\ 
-.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( -.  B  e. 
_V  \/  -.  -.  B  e.  _V ) )
563, 55rexlimddv 2653 . 2  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  ->  ( -.  B  e.  _V  \/  -.  -.  B  e.  _V )
)
57 df-dc 840 . 2  |-  (DECID  -.  B  e.  _V  <->  ( -.  B  e.  _V  \/  -.  -.  B  e.  _V )
)
5856, 57sylibr 134 1  |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  -> DECID  -.  B  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   _Vcvv 2799    \ cdif 3194    u. cun 3195   (/)c0 3491   {csn 3666   class class class wbr 4082   omcom 4681    ~~ cen 6883   Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator