| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unsnfidcex | Unicode version | ||
| Description: The |
| Ref | Expression |
|---|---|
| unsnfidcex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6851 |
. . . . 5
| |
| 2 | 1 | biimpi 120 |
. . . 4
|
| 3 | 2 | 3ad2ant1 1020 |
. . 3
|
| 4 | isfi 6851 |
. . . . . . 7
| |
| 5 | 4 | biimpi 120 |
. . . . . 6
|
| 6 | 5 | 3ad2ant3 1022 |
. . . . 5
|
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | simprr 531 |
. . . . . . . . . 10
| |
| 9 | 8 | ad3antrrr 492 |
. . . . . . . . 9
|
| 10 | simplr 528 |
. . . . . . . . 9
| |
| 11 | 9, 10 | breqtrrd 4071 |
. . . . . . . 8
|
| 12 | simprr 531 |
. . . . . . . . . 10
| |
| 13 | 12 | ad2antrr 488 |
. . . . . . . . 9
|
| 14 | 13 | ensymd 6874 |
. . . . . . . 8
|
| 15 | entr 6875 |
. . . . . . . 8
| |
| 16 | 11, 14, 15 | syl2anc 411 |
. . . . . . 7
|
| 17 | simp1 999 |
. . . . . . . . 9
| |
| 18 | 17 | ad4antr 494 |
. . . . . . . 8
|
| 19 | simpr 110 |
. . . . . . . . 9
| |
| 20 | simp2 1000 |
. . . . . . . . . 10
| |
| 21 | 20 | ad4antr 494 |
. . . . . . . . 9
|
| 22 | 19, 21 | eldifd 3175 |
. . . . . . . 8
|
| 23 | php5fin 6978 |
. . . . . . . 8
| |
| 24 | 18, 22, 23 | syl2anc 411 |
. . . . . . 7
|
| 25 | 16, 24 | pm2.65da 662 |
. . . . . 6
|
| 26 | 25 | orcd 734 |
. . . . 5
|
| 27 | 8 | ad3antrrr 492 |
. . . . . . . . . . 11
|
| 28 | 27 | ensymd 6874 |
. . . . . . . . . 10
|
| 29 | snprc 3697 |
. . . . . . . . . . . . . . 15
| |
| 30 | 29 | biimpi 120 |
. . . . . . . . . . . . . 14
|
| 31 | 30 | uneq2d 3326 |
. . . . . . . . . . . . 13
|
| 32 | un0 3493 |
. . . . . . . . . . . . 13
| |
| 33 | 31, 32 | eqtrdi 2253 |
. . . . . . . . . . . 12
|
| 34 | 33 | adantl 277 |
. . . . . . . . . . 11
|
| 35 | 12 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 36 | 34, 35 | eqbrtrrd 4067 |
. . . . . . . . . 10
|
| 37 | entr 6875 |
. . . . . . . . . 10
| |
| 38 | 28, 36, 37 | syl2anc 411 |
. . . . . . . . 9
|
| 39 | simplrl 535 |
. . . . . . . . . . 11
| |
| 40 | 39 | ad2antrr 488 |
. . . . . . . . . 10
|
| 41 | simprl 529 |
. . . . . . . . . . 11
| |
| 42 | 41 | ad2antrr 488 |
. . . . . . . . . 10
|
| 43 | nneneq 6953 |
. . . . . . . . . 10
| |
| 44 | 40, 42, 43 | syl2anc 411 |
. . . . . . . . 9
|
| 45 | 38, 44 | mpbid 147 |
. . . . . . . 8
|
| 46 | 45 | eqcomd 2210 |
. . . . . . 7
|
| 47 | simplr 528 |
. . . . . . 7
| |
| 48 | 46, 47 | pm2.65da 662 |
. . . . . 6
|
| 49 | 48 | olcd 735 |
. . . . 5
|
| 50 | nndceq 6584 |
. . . . . . 7
| |
| 51 | 41, 39, 50 | syl2anc 411 |
. . . . . 6
|
| 52 | exmiddc 837 |
. . . . . 6
| |
| 53 | 51, 52 | syl 14 |
. . . . 5
|
| 54 | 26, 49, 53 | mpjaodan 799 |
. . . 4
|
| 55 | 7, 54 | rexlimddv 2627 |
. . 3
|
| 56 | 3, 55 | rexlimddv 2627 |
. 2
|
| 57 | df-dc 836 |
. 2
| |
| 58 | 56, 57 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1o 6501 df-er 6619 df-en 6827 df-fin 6829 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |