Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > nnti | Unicode version |
Description: Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.) |
Ref | Expression |
---|---|
nnti.a |
Ref | Expression |
---|---|
nnti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 521 | . . . 4 | |
2 | nnti.a | . . . . 5 | |
3 | 2 | adantr 274 | . . . 4 |
4 | elnn 4583 | . . . 4 | |
5 | 1, 3, 4 | syl2anc 409 | . . 3 |
6 | simprr 522 | . . . 4 | |
7 | elnn 4583 | . . . 4 | |
8 | 6, 3, 7 | syl2anc 409 | . . 3 |
9 | nntri3 6465 | . . 3 | |
10 | 5, 8, 9 | syl2anc 409 | . 2 |
11 | epel 4270 | . . . 4 | |
12 | 11 | notbii 658 | . . 3 |
13 | epel 4270 | . . . 4 | |
14 | 13 | notbii 658 | . . 3 |
15 | 12, 14 | anbi12i 456 | . 2 |
16 | 10, 15 | bitr4di 197 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2136 class class class wbr 3982 cep 4265 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-eprel 4267 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |