Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnti Unicode version

Theorem nnti 11549
Description: Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.)
Hypothesis
Ref Expression
nnti.a  |-  ( ph  ->  A  e.  om )
Assertion
Ref Expression
nnti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u  _E  v  /\  -.  v  _E  u ) ) )

Proof of Theorem nnti
StepHypRef Expression
1 simprl 498 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  ->  u  e.  A )
2 nnti.a . . . . 5  |-  ( ph  ->  A  e.  om )
32adantr 270 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  ->  A  e.  om )
4 elnn 4410 . . . 4  |-  ( ( u  e.  A  /\  A  e.  om )  ->  u  e.  om )
51, 3, 4syl2anc 403 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  ->  u  e.  om )
6 simprr 499 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
v  e.  A )
7 elnn 4410 . . . 4  |-  ( ( v  e.  A  /\  A  e.  om )  ->  v  e.  om )
86, 3, 7syl2anc 403 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
v  e.  om )
9 nntri3 6240 . . 3  |-  ( ( u  e.  om  /\  v  e.  om )  ->  ( u  =  v  <-> 
( -.  u  e.  v  /\  -.  v  e.  u ) ) )
105, 8, 9syl2anc 403 . 2  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u  e.  v  /\  -.  v  e.  u ) ) )
11 epel 4110 . . . 4  |-  ( u  _E  v  <->  u  e.  v )
1211notbii 629 . . 3  |-  ( -.  u  _E  v  <->  -.  u  e.  v )
13 epel 4110 . . . 4  |-  ( v  _E  u  <->  v  e.  u )
1413notbii 629 . . 3  |-  ( -.  v  _E  u  <->  -.  v  e.  u )
1512, 14anbi12i 448 . 2  |-  ( ( -.  u  _E  v  /\  -.  v  _E  u
)  <->  ( -.  u  e.  v  /\  -.  v  e.  u ) )
1610, 15syl6bbr 196 1  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u  _E  v  /\  -.  v  _E  u ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1438   class class class wbr 3837    _E cep 4105   omcom 4395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-tr 3929  df-eprel 4107  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator