Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > nnti | Unicode version |
Description: Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.) |
Ref | Expression |
---|---|
nnti.a |
Ref | Expression |
---|---|
nnti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 521 | . . . 4 | |
2 | nnti.a | . . . . 5 | |
3 | 2 | adantr 274 | . . . 4 |
4 | elnn 4563 | . . . 4 | |
5 | 1, 3, 4 | syl2anc 409 | . . 3 |
6 | simprr 522 | . . . 4 | |
7 | elnn 4563 | . . . 4 | |
8 | 6, 3, 7 | syl2anc 409 | . . 3 |
9 | nntri3 6437 | . . 3 | |
10 | 5, 8, 9 | syl2anc 409 | . 2 |
11 | epel 4251 | . . . 4 | |
12 | 11 | notbii 658 | . . 3 |
13 | epel 4251 | . . . 4 | |
14 | 13 | notbii 658 | . . 3 |
15 | 12, 14 | anbi12i 456 | . 2 |
16 | 10, 15 | bitr4di 197 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2128 class class class wbr 3965 cep 4246 com 4547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-tr 4063 df-eprel 4248 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |