Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnti Unicode version

Theorem nnti 16356
Description: Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.)
Hypothesis
Ref Expression
nnti.a  |-  ( ph  ->  A  e.  om )
Assertion
Ref Expression
nnti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u  _E  v  /\  -.  v  _E  u ) ) )

Proof of Theorem nnti
StepHypRef Expression
1 simprl 529 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  ->  u  e.  A )
2 nnti.a . . . . 5  |-  ( ph  ->  A  e.  om )
32adantr 276 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  ->  A  e.  om )
4 elnn 4698 . . . 4  |-  ( ( u  e.  A  /\  A  e.  om )  ->  u  e.  om )
51, 3, 4syl2anc 411 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  ->  u  e.  om )
6 simprr 531 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
v  e.  A )
7 elnn 4698 . . . 4  |-  ( ( v  e.  A  /\  A  e.  om )  ->  v  e.  om )
86, 3, 7syl2anc 411 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
v  e.  om )
9 nntri3 6643 . . 3  |-  ( ( u  e.  om  /\  v  e.  om )  ->  ( u  =  v  <-> 
( -.  u  e.  v  /\  -.  v  e.  u ) ) )
105, 8, 9syl2anc 411 . 2  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u  e.  v  /\  -.  v  e.  u ) ) )
11 epel 4383 . . . 4  |-  ( u  _E  v  <->  u  e.  v )
1211notbii 672 . . 3  |-  ( -.  u  _E  v  <->  -.  u  e.  v )
13 epel 4383 . . . 4  |-  ( v  _E  u  <->  v  e.  u )
1413notbii 672 . . 3  |-  ( -.  v  _E  u  <->  -.  v  e.  u )
1512, 14anbi12i 460 . 2  |-  ( ( -.  u  _E  v  /\  -.  v  _E  u
)  <->  ( -.  u  e.  v  /\  -.  v  e.  u ) )
1610, 15bitr4di 198 1  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u  _E  v  /\  -.  v  _E  u ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   class class class wbr 4083    _E cep 4378   omcom 4682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-tr 4183  df-eprel 4380  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator