Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnti Unicode version

Theorem nnti 13527
Description: Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.)
Hypothesis
Ref Expression
nnti.a  |-  ( ph  ->  A  e.  om )
Assertion
Ref Expression
nnti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u  _E  v  /\  -.  v  _E  u ) ) )

Proof of Theorem nnti
StepHypRef Expression
1 simprl 521 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  ->  u  e.  A )
2 nnti.a . . . . 5  |-  ( ph  ->  A  e.  om )
32adantr 274 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  ->  A  e.  om )
4 elnn 4563 . . . 4  |-  ( ( u  e.  A  /\  A  e.  om )  ->  u  e.  om )
51, 3, 4syl2anc 409 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  ->  u  e.  om )
6 simprr 522 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
v  e.  A )
7 elnn 4563 . . . 4  |-  ( ( v  e.  A  /\  A  e.  om )  ->  v  e.  om )
86, 3, 7syl2anc 409 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
v  e.  om )
9 nntri3 6437 . . 3  |-  ( ( u  e.  om  /\  v  e.  om )  ->  ( u  =  v  <-> 
( -.  u  e.  v  /\  -.  v  e.  u ) ) )
105, 8, 9syl2anc 409 . 2  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u  e.  v  /\  -.  v  e.  u ) ) )
11 epel 4251 . . . 4  |-  ( u  _E  v  <->  u  e.  v )
1211notbii 658 . . 3  |-  ( -.  u  _E  v  <->  -.  u  e.  v )
13 epel 4251 . . . 4  |-  ( v  _E  u  <->  v  e.  u )
1413notbii 658 . . 3  |-  ( -.  v  _E  u  <->  -.  v  e.  u )
1512, 14anbi12i 456 . 2  |-  ( ( -.  u  _E  v  /\  -.  v  _E  u
)  <->  ( -.  u  e.  v  /\  -.  v  e.  u ) )
1610, 15bitr4di 197 1  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u  _E  v  /\  -.  v  _E  u ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2128   class class class wbr 3965    _E cep 4246   omcom 4547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-tr 4063  df-eprel 4248  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator