ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssint GIF version

Theorem ssint 3918
Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
ssint (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfss3 3193 . 2 (𝐴 𝐵 ↔ ∀𝑦𝐴 𝑦 𝐵)
2 vex 2782 . . . 4 𝑦 ∈ V
32elint2 3909 . . 3 (𝑦 𝐵 ↔ ∀𝑥𝐵 𝑦𝑥)
43ralbii 2516 . 2 (∀𝑦𝐴 𝑦 𝐵 ↔ ∀𝑦𝐴𝑥𝐵 𝑦𝑥)
5 ralcom 2674 . . 3 (∀𝑦𝐴𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵𝑦𝐴 𝑦𝑥)
6 dfss3 3193 . . . 4 (𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
76ralbii 2516 . . 3 (∀𝑥𝐵 𝐴𝑥 ↔ ∀𝑥𝐵𝑦𝐴 𝑦𝑥)
85, 7bitr4i 187 . 2 (∀𝑦𝐴𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵 𝐴𝑥)
91, 4, 83bitri 206 1 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2180  wral 2488  wss 3177   cint 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-v 2781  df-in 3183  df-ss 3190  df-int 3903
This theorem is referenced by:  ssintab  3919  ssintub  3920  iinpw  4035  trint  4176  fintm  5487  bj-ssom  16209
  Copyright terms: Public domain W3C validator