ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcbc Unicode version

Theorem pcbc 12281
Description: Calculate the prime count of a binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
pcbc  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( N  _C  K ) )  =  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^ k ) ) )  -  ( ( |_ `  ( ( N  -  K )  /  ( P ^
k ) ) )  +  ( |_ `  ( K  /  ( P ^ k ) ) ) ) ) )
Distinct variable groups:    P, k    k, N    k, K

Proof of Theorem pcbc
StepHypRef Expression
1 simp3 989 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  P  e.  Prime )
2 nnnn0 9121 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
323ad2ant1 1008 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  NN0 )
43faccld 10649 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  N
)  e.  NN )
54nnzd 9312 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  N
)  e.  ZZ )
64nnne0d 8902 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  N
)  =/=  0 )
7 fznn0sub 9992 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  NN0 )
873ad2ant2 1009 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  -  K
)  e.  NN0 )
98faccld 10649 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  ( N  -  K )
)  e.  NN )
10 elfznn0 10049 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
11103ad2ant2 1009 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  K  e.  NN0 )
1211faccld 10649 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  K
)  e.  NN )
139, 12nnmulcld 8906 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  NN )
14 pcdiv 12234 . . 3  |-  ( ( P  e.  Prime  /\  (
( ! `  N
)  e.  ZZ  /\  ( ! `  N )  =/=  0 )  /\  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  NN )  ->  ( P  pCnt  ( ( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )  =  ( ( P  pCnt  ( ! `  N ) )  -  ( P  pCnt  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) ) )
151, 5, 6, 13, 14syl121anc 1233 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  (
( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )  =  ( ( P  pCnt  ( ! `  N ) )  -  ( P  pCnt  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) ) )
16 bcval2 10663 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
17163ad2ant2 1009 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  _C  K
)  =  ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) )
1817oveq2d 5858 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( N  _C  K ) )  =  ( P  pCnt  ( ( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) ) )
19 1zzd 9218 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
1  e.  ZZ )
203nn0zd 9311 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ZZ )
2119, 20fzfigd 10366 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( 1 ... N
)  e.  Fin )
2220adantr 274 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  N  e.  ZZ )
23 simpl3 992 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  P  e.  Prime )
24 prmnn 12042 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
2523, 24syl 14 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  P  e.  NN )
26 elfznn 9989 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN )
2726nnnn0d 9167 . . . . . . . . 9  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN0 )
2827adantl 275 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  k  e.  NN0 )
2925, 28nnexpcld 10610 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( P ^
k )  e.  NN )
30 znq 9562 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( P ^ k )  e.  NN )  -> 
( N  /  ( P ^ k ) )  e.  QQ )
3122, 29, 30syl2anc 409 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( N  / 
( P ^ k
) )  e.  QQ )
3231flqcld 10212 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  e.  ZZ )
3332zcnd 9314 . . . 4  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  e.  CC )
34 simpl2 991 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  K  e.  ( 0 ... N ) )
3510nn0zd 9311 . . . . . . . . . 10  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
3634, 35syl 14 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  K  e.  ZZ )
3722, 36zsubcld 9318 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( N  -  K )  e.  ZZ )
38 znq 9562 . . . . . . . 8  |-  ( ( ( N  -  K
)  e.  ZZ  /\  ( P ^ k )  e.  NN )  -> 
( ( N  -  K )  /  ( P ^ k ) )  e.  QQ )
3937, 29, 38syl2anc 409 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( ( N  -  K )  / 
( P ^ k
) )  e.  QQ )
4039flqcld 10212 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  e.  ZZ )
4140zcnd 9314 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  e.  CC )
42 znq 9562 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  ( P ^ k )  e.  NN )  -> 
( K  /  ( P ^ k ) )  e.  QQ )
4336, 29, 42syl2anc 409 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( K  / 
( P ^ k
) )  e.  QQ )
4443flqcld 10212 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( K  /  ( P ^ k ) ) )  e.  ZZ )
4544zcnd 9314 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( K  /  ( P ^ k ) ) )  e.  CC )
4641, 45addcld 7918 . . . 4  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) )  e.  CC )
4721, 33, 46fsumsub 11393 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^
k ) ) )  -  ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) )  =  (
sum_ k  e.  ( 1 ... N ) ( |_ `  ( N  /  ( P ^
k ) ) )  -  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  +  ( |_
`  ( K  / 
( P ^ k
) ) ) ) ) )
48 uzid 9480 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
4920, 48syl 14 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ( ZZ>= `  N ) )
50 pcfac 12280 . . . . 5  |-  ( ( N  e.  NN0  /\  N  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... N ) ( |_ `  ( N  /  ( P ^
k ) ) ) )
513, 49, 1, 50syl3anc 1228 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( ! `  N )
)  =  sum_ k  e.  ( 1 ... N
) ( |_ `  ( N  /  ( P ^ k ) ) ) )
5211nn0ge0d 9170 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
0  <_  K )
53 nnre 8864 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  RR )
54533ad2ant1 1008 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  RR )
5511nn0red 9168 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  K  e.  RR )
5654, 55subge02d 8435 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( 0  <_  K  <->  ( N  -  K )  <_  N ) )
5752, 56mpbid 146 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  -  K
)  <_  N )
5811nn0zd 9311 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  K  e.  ZZ )
5920, 58zsubcld 9318 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  -  K
)  e.  ZZ )
60 eluz 9479 . . . . . . . . 9  |-  ( ( ( N  -  K
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  ( N  -  K ) )  <->  ( N  -  K )  <_  N
) )
6159, 20, 60syl2anc 409 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  e.  (
ZZ>= `  ( N  -  K ) )  <->  ( N  -  K )  <_  N
) )
6257, 61mpbird 166 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ( ZZ>= `  ( N  -  K
) ) )
63 pcfac 12280 . . . . . . 7  |-  ( ( ( N  -  K
)  e.  NN0  /\  N  e.  ( ZZ>= `  ( N  -  K
) )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  ( N  -  K
) ) )  = 
sum_ k  e.  ( 1 ... N ) ( |_ `  (
( N  -  K
)  /  ( P ^ k ) ) ) )
648, 62, 1, 63syl3anc 1228 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( ! `  ( N  -  K ) ) )  =  sum_ k  e.  ( 1 ... N ) ( |_ `  (
( N  -  K
)  /  ( P ^ k ) ) ) )
65 elfzuz3 9957 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  K )
)
66653ad2ant2 1009 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ( ZZ>= `  K ) )
67 pcfac 12280 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  K ) )  = 
sum_ k  e.  ( 1 ... N ) ( |_ `  ( K  /  ( P ^
k ) ) ) )
6811, 66, 1, 67syl3anc 1228 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( ! `  K )
)  =  sum_ k  e.  ( 1 ... N
) ( |_ `  ( K  /  ( P ^ k ) ) ) )
6964, 68oveq12d 5860 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ( P  pCnt  ( ! `  ( N  -  K ) ) )  +  ( P 
pCnt  ( ! `  K ) ) )  =  ( sum_ k  e.  ( 1 ... N
) ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  +  sum_ k  e.  ( 1 ... N
) ( |_ `  ( K  /  ( P ^ k ) ) ) ) )
709nnzd 9312 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  ( N  -  K )
)  e.  ZZ )
719nnne0d 8902 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  ( N  -  K )
)  =/=  0 )
7212nnzd 9312 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  K
)  e.  ZZ )
7312nnne0d 8902 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  K
)  =/=  0 )
74 pcmul 12233 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
( ! `  ( N  -  K )
)  e.  ZZ  /\  ( ! `  ( N  -  K ) )  =/=  0 )  /\  ( ( ! `  K )  e.  ZZ  /\  ( ! `  K
)  =/=  0 ) )  ->  ( P  pCnt  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) )  =  ( ( P  pCnt  ( ! `  ( N  -  K ) ) )  +  ( P  pCnt  ( ! `  K ) ) ) )
751, 70, 71, 72, 73, 74syl122anc 1237 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) )  =  ( ( P  pCnt  ( ! `  ( N  -  K
) ) )  +  ( P  pCnt  ( ! `  K )
) ) )
7621, 41, 45fsumadd 11347 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... N ) ( ( |_ `  (
( N  -  K
)  /  ( P ^ k ) ) )  +  ( |_
`  ( K  / 
( P ^ k
) ) ) )  =  ( sum_ k  e.  ( 1 ... N
) ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  +  sum_ k  e.  ( 1 ... N
) ( |_ `  ( K  /  ( P ^ k ) ) ) ) )
7769, 75, 763eqtr4d 2208 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) )  =  sum_ k  e.  ( 1 ... N
) ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) )
7851, 77oveq12d 5860 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ( P  pCnt  ( ! `  N ) )  -  ( P 
pCnt  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) )  =  ( sum_ k  e.  ( 1 ... N
) ( |_ `  ( N  /  ( P ^ k ) ) )  -  sum_ k  e.  ( 1 ... N
) ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) ) )
7947, 78eqtr4d 2201 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^
k ) ) )  -  ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) )  =  ( ( P  pCnt  ( ! `  N )
)  -  ( P 
pCnt  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) ) )
8015, 18, 793eqtr4d 2208 1  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( N  _C  K ) )  =  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^ k ) ) )  -  ( ( |_ `  ( ( N  -  K )  /  ( P ^
k ) ) )  +  ( |_ `  ( K  /  ( P ^ k ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    <_ cle 7934    - cmin 8069    / cdiv 8568   NNcn 8857   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   QQcq 9557   ...cfz 9944   |_cfl 10203   ^cexp 10454   !cfa 10638    _C cbc 10660   sum_csu 11294   Primecprime 12039    pCnt cpc 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-2o 6385  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-dvds 11728  df-gcd 11876  df-prm 12040  df-pc 12217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator