ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcbc Unicode version

Theorem pcbc 12349
Description: Calculate the prime count of a binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
pcbc  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( N  _C  K ) )  =  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^ k ) ) )  -  ( ( |_ `  ( ( N  -  K )  /  ( P ^
k ) ) )  +  ( |_ `  ( K  /  ( P ^ k ) ) ) ) ) )
Distinct variable groups:    P, k    k, N    k, K

Proof of Theorem pcbc
StepHypRef Expression
1 simp3 999 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  P  e.  Prime )
2 nnnn0 9183 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
323ad2ant1 1018 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  NN0 )
43faccld 10716 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  N
)  e.  NN )
54nnzd 9374 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  N
)  e.  ZZ )
64nnne0d 8964 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  N
)  =/=  0 )
7 fznn0sub 10057 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  NN0 )
873ad2ant2 1019 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  -  K
)  e.  NN0 )
98faccld 10716 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  ( N  -  K )
)  e.  NN )
10 elfznn0 10114 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
11103ad2ant2 1019 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  K  e.  NN0 )
1211faccld 10716 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  K
)  e.  NN )
139, 12nnmulcld 8968 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  NN )
14 pcdiv 12302 . . 3  |-  ( ( P  e.  Prime  /\  (
( ! `  N
)  e.  ZZ  /\  ( ! `  N )  =/=  0 )  /\  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  NN )  ->  ( P  pCnt  ( ( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )  =  ( ( P  pCnt  ( ! `  N ) )  -  ( P  pCnt  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) ) )
151, 5, 6, 13, 14syl121anc 1243 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  (
( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )  =  ( ( P  pCnt  ( ! `  N ) )  -  ( P  pCnt  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) ) )
16 bcval2 10730 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
17163ad2ant2 1019 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  _C  K
)  =  ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) )
1817oveq2d 5891 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( N  _C  K ) )  =  ( P  pCnt  ( ( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) ) )
19 1zzd 9280 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
1  e.  ZZ )
203nn0zd 9373 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ZZ )
2119, 20fzfigd 10431 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( 1 ... N
)  e.  Fin )
2220adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  N  e.  ZZ )
23 simpl3 1002 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  P  e.  Prime )
24 prmnn 12110 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
2523, 24syl 14 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  P  e.  NN )
26 elfznn 10054 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN )
2726nnnn0d 9229 . . . . . . . . 9  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN0 )
2827adantl 277 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  k  e.  NN0 )
2925, 28nnexpcld 10676 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( P ^
k )  e.  NN )
30 znq 9624 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( P ^ k )  e.  NN )  -> 
( N  /  ( P ^ k ) )  e.  QQ )
3122, 29, 30syl2anc 411 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( N  / 
( P ^ k
) )  e.  QQ )
3231flqcld 10277 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  e.  ZZ )
3332zcnd 9376 . . . 4  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  e.  CC )
34 simpl2 1001 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  K  e.  ( 0 ... N ) )
3510nn0zd 9373 . . . . . . . . . 10  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
3634, 35syl 14 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  K  e.  ZZ )
3722, 36zsubcld 9380 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( N  -  K )  e.  ZZ )
38 znq 9624 . . . . . . . 8  |-  ( ( ( N  -  K
)  e.  ZZ  /\  ( P ^ k )  e.  NN )  -> 
( ( N  -  K )  /  ( P ^ k ) )  e.  QQ )
3937, 29, 38syl2anc 411 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( ( N  -  K )  / 
( P ^ k
) )  e.  QQ )
4039flqcld 10277 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  e.  ZZ )
4140zcnd 9376 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  e.  CC )
42 znq 9624 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  ( P ^ k )  e.  NN )  -> 
( K  /  ( P ^ k ) )  e.  QQ )
4336, 29, 42syl2anc 411 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( K  / 
( P ^ k
) )  e.  QQ )
4443flqcld 10277 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( K  /  ( P ^ k ) ) )  e.  ZZ )
4544zcnd 9376 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( K  /  ( P ^ k ) ) )  e.  CC )
4641, 45addcld 7977 . . . 4  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) )  e.  CC )
4721, 33, 46fsumsub 11460 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^
k ) ) )  -  ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) )  =  (
sum_ k  e.  ( 1 ... N ) ( |_ `  ( N  /  ( P ^
k ) ) )  -  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  +  ( |_
`  ( K  / 
( P ^ k
) ) ) ) ) )
48 uzid 9542 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
4920, 48syl 14 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ( ZZ>= `  N ) )
50 pcfac 12348 . . . . 5  |-  ( ( N  e.  NN0  /\  N  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... N ) ( |_ `  ( N  /  ( P ^
k ) ) ) )
513, 49, 1, 50syl3anc 1238 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( ! `  N )
)  =  sum_ k  e.  ( 1 ... N
) ( |_ `  ( N  /  ( P ^ k ) ) ) )
5211nn0ge0d 9232 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
0  <_  K )
53 nnre 8926 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  RR )
54533ad2ant1 1018 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  RR )
5511nn0red 9230 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  K  e.  RR )
5654, 55subge02d 8494 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( 0  <_  K  <->  ( N  -  K )  <_  N ) )
5752, 56mpbid 147 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  -  K
)  <_  N )
5811nn0zd 9373 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  K  e.  ZZ )
5920, 58zsubcld 9380 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  -  K
)  e.  ZZ )
60 eluz 9541 . . . . . . . . 9  |-  ( ( ( N  -  K
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  ( N  -  K ) )  <->  ( N  -  K )  <_  N
) )
6159, 20, 60syl2anc 411 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  e.  (
ZZ>= `  ( N  -  K ) )  <->  ( N  -  K )  <_  N
) )
6257, 61mpbird 167 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ( ZZ>= `  ( N  -  K
) ) )
63 pcfac 12348 . . . . . . 7  |-  ( ( ( N  -  K
)  e.  NN0  /\  N  e.  ( ZZ>= `  ( N  -  K
) )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  ( N  -  K
) ) )  = 
sum_ k  e.  ( 1 ... N ) ( |_ `  (
( N  -  K
)  /  ( P ^ k ) ) ) )
648, 62, 1, 63syl3anc 1238 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( ! `  ( N  -  K ) ) )  =  sum_ k  e.  ( 1 ... N ) ( |_ `  (
( N  -  K
)  /  ( P ^ k ) ) ) )
65 elfzuz3 10022 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  K )
)
66653ad2ant2 1019 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ( ZZ>= `  K ) )
67 pcfac 12348 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  K ) )  = 
sum_ k  e.  ( 1 ... N ) ( |_ `  ( K  /  ( P ^
k ) ) ) )
6811, 66, 1, 67syl3anc 1238 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( ! `  K )
)  =  sum_ k  e.  ( 1 ... N
) ( |_ `  ( K  /  ( P ^ k ) ) ) )
6964, 68oveq12d 5893 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ( P  pCnt  ( ! `  ( N  -  K ) ) )  +  ( P 
pCnt  ( ! `  K ) ) )  =  ( sum_ k  e.  ( 1 ... N
) ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  +  sum_ k  e.  ( 1 ... N
) ( |_ `  ( K  /  ( P ^ k ) ) ) ) )
709nnzd 9374 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  ( N  -  K )
)  e.  ZZ )
719nnne0d 8964 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  ( N  -  K )
)  =/=  0 )
7212nnzd 9374 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  K
)  e.  ZZ )
7312nnne0d 8964 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  K
)  =/=  0 )
74 pcmul 12301 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
( ! `  ( N  -  K )
)  e.  ZZ  /\  ( ! `  ( N  -  K ) )  =/=  0 )  /\  ( ( ! `  K )  e.  ZZ  /\  ( ! `  K
)  =/=  0 ) )  ->  ( P  pCnt  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) )  =  ( ( P  pCnt  ( ! `  ( N  -  K ) ) )  +  ( P  pCnt  ( ! `  K ) ) ) )
751, 70, 71, 72, 73, 74syl122anc 1247 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) )  =  ( ( P  pCnt  ( ! `  ( N  -  K
) ) )  +  ( P  pCnt  ( ! `  K )
) ) )
7621, 41, 45fsumadd 11414 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... N ) ( ( |_ `  (
( N  -  K
)  /  ( P ^ k ) ) )  +  ( |_
`  ( K  / 
( P ^ k
) ) ) )  =  ( sum_ k  e.  ( 1 ... N
) ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  +  sum_ k  e.  ( 1 ... N
) ( |_ `  ( K  /  ( P ^ k ) ) ) ) )
7769, 75, 763eqtr4d 2220 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) )  =  sum_ k  e.  ( 1 ... N
) ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) )
7851, 77oveq12d 5893 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ( P  pCnt  ( ! `  N ) )  -  ( P 
pCnt  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) )  =  ( sum_ k  e.  ( 1 ... N
) ( |_ `  ( N  /  ( P ^ k ) ) )  -  sum_ k  e.  ( 1 ... N
) ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) ) )
7947, 78eqtr4d 2213 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^
k ) ) )  -  ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) )  =  ( ( P  pCnt  ( ! `  N )
)  -  ( P 
pCnt  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) ) )
8015, 18, 793eqtr4d 2220 1  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( N  _C  K ) )  =  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^ k ) ) )  -  ( ( |_ `  ( ( N  -  K )  /  ( P ^
k ) ) )  +  ( |_ `  ( K  /  ( P ^ k ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4004   ` cfv 5217  (class class class)co 5875   RRcr 7810   0cc0 7811   1c1 7812    + caddc 7814    x. cmul 7816    <_ cle 7993    - cmin 8128    / cdiv 8629   NNcn 8919   NN0cn0 9176   ZZcz 9253   ZZ>=cuz 9528   QQcq 9619   ...cfz 10008   |_cfl 10268   ^cexp 10519   !cfa 10705    _C cbc 10727   sum_csu 11361   Primecprime 12107    pCnt cpc 12284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-2o 6418  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-fl 10270  df-mod 10323  df-seqfrec 10446  df-exp 10520  df-fac 10706  df-bc 10728  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-sumdc 11362  df-dvds 11795  df-gcd 11944  df-prm 12108  df-pc 12285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator