ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcid Unicode version

Theorem pcid 12762
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
pcid  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  pCnt  ( P ^ A ) )  =  A )

Proof of Theorem pcid
StepHypRef Expression
1 elznn0nn 9421 . 2  |-  ( A  e.  ZZ  <->  ( A  e.  NN0  \/  ( A  e.  RR  /\  -u A  e.  NN ) ) )
2 pcidlem 12761 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
3 prmnn 12547 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
43adantr 276 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  P  e.  NN )
54nncnd 9085 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  P  e.  CC )
64nnap0d 9117 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  P #  0 )
7 simprl 529 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  A  e.  RR )
87recnd 8136 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  A  e.  CC )
9 nnnn0 9337 . . . . . . 7  |-  ( -u A  e.  NN  ->  -u A  e.  NN0 )
109ad2antll 491 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  -u A  e.  NN0 )
11 expineg2 10730 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( A  e.  CC  /\  -u A  e.  NN0 ) )  ->  ( P ^ A )  =  ( 1  /  ( P ^ -u A ) ) )
125, 6, 8, 10, 11syl22anc 1251 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P ^ A
)  =  ( 1  /  ( P ^ -u A ) ) )
1312oveq2d 5983 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P  pCnt  ( P ^ A ) )  =  ( P  pCnt  ( 1  /  ( P ^ -u A ) ) ) )
14 simpl 109 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  P  e.  Prime )
15 1zzd 9434 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
1  e.  ZZ )
16 1ne0 9139 . . . . . . 7  |-  1  =/=  0
1716a1i 9 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
1  =/=  0 )
184, 10nnexpcld 10877 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P ^ -u A
)  e.  NN )
19 pcdiv 12740 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
1  e.  ZZ  /\  1  =/=  0 )  /\  ( P ^ -u A
)  e.  NN )  ->  ( P  pCnt  ( 1  /  ( P ^ -u A ) ) )  =  ( ( P  pCnt  1
)  -  ( P 
pCnt  ( P ^ -u A ) ) ) )
2014, 15, 17, 18, 19syl121anc 1255 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P  pCnt  (
1  /  ( P ^ -u A ) ) )  =  ( ( P  pCnt  1
)  -  ( P 
pCnt  ( P ^ -u A ) ) ) )
21 pc1 12743 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( P 
pCnt  1 )  =  0 )
2221adantr 276 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P  pCnt  1
)  =  0 )
23 pcidlem 12761 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  -u A  e.  NN0 )  ->  ( P  pCnt  ( P ^ -u A ) )  = 
-u A )
2410, 23syldan 282 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P  pCnt  ( P ^ -u A ) )  =  -u A
)
2522, 24oveq12d 5985 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( ( P  pCnt  1 )  -  ( P  pCnt  ( P ^ -u A ) ) )  =  ( 0  - 
-u A ) )
26 df-neg 8281 . . . . . . 7  |-  -u -u A  =  ( 0  - 
-u A )
278negnegd 8409 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  -u -u A  =  A
)
2826, 27eqtr3id 2254 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( 0  -  -u A
)  =  A )
2925, 28eqtrd 2240 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( ( P  pCnt  1 )  -  ( P  pCnt  ( P ^ -u A ) ) )  =  A )
3020, 29eqtrd 2240 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P  pCnt  (
1  /  ( P ^ -u A ) ) )  =  A )
3113, 30eqtrd 2240 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P  pCnt  ( P ^ A ) )  =  A )
322, 31jaodan 799 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  NN0  \/  ( A  e.  RR  /\  -u A  e.  NN ) ) )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
331, 32sylan2b 287 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178    =/= wne 2378   class class class wbr 4059  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    - cmin 8278   -ucneg 8279   # cap 8689    / cdiv 8780   NNcn 9071   NN0cn0 9330   ZZcz 9407   ^cexp 10720   Primecprime 12544    pCnt cpc 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-prm 12545  df-pc 12723
This theorem is referenced by:  pcprmpw2  12771  pcaddlem  12777  expnprm  12791  dvdsppwf1o  15576  lgsval2lem  15602
  Copyright terms: Public domain W3C validator