ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcaddlem Unicode version

Theorem pcaddlem 12356
Description: Lemma for pcadd 12357. The original numbers  A and  B have been decomposed using the prime count function as  ( P ^ M )  x.  ( R  /  S ) where  R ,  S are both not divisible by  P and  M  =  ( P  pCnt  A ), and similarly for  B. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
pcaddlem.1  |-  ( ph  ->  P  e.  Prime )
pcaddlem.2  |-  ( ph  ->  A  =  ( ( P ^ M )  x.  ( R  /  S ) ) )
pcaddlem.3  |-  ( ph  ->  B  =  ( ( P ^ N )  x.  ( T  /  U ) ) )
pcaddlem.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
pcaddlem.5  |-  ( ph  ->  ( R  e.  ZZ  /\ 
-.  P  ||  R
) )
pcaddlem.6  |-  ( ph  ->  ( S  e.  NN  /\ 
-.  P  ||  S
) )
pcaddlem.7  |-  ( ph  ->  ( T  e.  ZZ  /\ 
-.  P  ||  T
) )
pcaddlem.8  |-  ( ph  ->  ( U  e.  NN  /\ 
-.  P  ||  U
) )
Assertion
Ref Expression
pcaddlem  |-  ( ph  ->  M  <_  ( P  pCnt  ( A  +  B
) ) )

Proof of Theorem pcaddlem
StepHypRef Expression
1 pcaddlem.4 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzel2 9551 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
43zred 9393 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
54rexrd 8025 . . . . . 6  |-  ( ph  ->  M  e.  RR* )
6 pnfge 9807 . . . . . 6  |-  ( M  e.  RR*  ->  M  <_ +oo )
75, 6syl 14 . . . . 5  |-  ( ph  ->  M  <_ +oo )
8 pcaddlem.1 . . . . . 6  |-  ( ph  ->  P  e.  Prime )
9 pc0 12322 . . . . . 6  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
108, 9syl 14 . . . . 5  |-  ( ph  ->  ( P  pCnt  0
)  = +oo )
117, 10breqtrrd 4046 . . . 4  |-  ( ph  ->  M  <_  ( P  pCnt  0 ) )
1211adantr 276 . . 3  |-  ( (
ph  /\  ( A  +  B )  =  0 )  ->  M  <_  ( P  pCnt  0 ) )
13 simpr 110 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =  0 )  ->  ( A  +  B )  =  0 )
1413oveq2d 5907 . . 3  |-  ( (
ph  /\  ( A  +  B )  =  0 )  ->  ( P  pCnt  ( A  +  B
) )  =  ( P  pCnt  0 ) )
1512, 14breqtrrd 4046 . 2  |-  ( (
ph  /\  ( A  +  B )  =  0 )  ->  M  <_  ( P  pCnt  ( A  +  B ) ) )
164adantr 276 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  M  e.  RR )
17 prmnn 12128 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  NN )
188, 17syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  NN )
1918nncnd 8951 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  CC )
2018nnap0d 8983 . . . . . . . . . . . 12  |-  ( ph  ->  P #  0 )
21 eluzelz 9555 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
221, 21syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ZZ )
2322, 3zsubcld 9398 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  -  M
)  e.  ZZ )
2419, 20, 23expclzapd 10677 . . . . . . . . . . 11  |-  ( ph  ->  ( P ^ ( N  -  M )
)  e.  CC )
25 pcaddlem.7 . . . . . . . . . . . . 13  |-  ( ph  ->  ( T  e.  ZZ  /\ 
-.  P  ||  T
) )
2625simpld 112 . . . . . . . . . . . 12  |-  ( ph  ->  T  e.  ZZ )
2726zcnd 9394 . . . . . . . . . . 11  |-  ( ph  ->  T  e.  CC )
28 pcaddlem.8 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U  e.  NN  /\ 
-.  P  ||  U
) )
2928simpld 112 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  NN )
3029nncnd 8951 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  CC )
3129nnap0d 8983 . . . . . . . . . . 11  |-  ( ph  ->  U #  0 )
3224, 27, 30, 31divassapd 8801 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( P ^ ( N  -  M ) )  x.  T )  /  U
)  =  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) )
3332oveq2d 5907 . . . . . . . . 9  |-  ( ph  ->  ( ( R  /  S )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  /  U ) )  =  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) )
34 pcaddlem.5 . . . . . . . . . . . 12  |-  ( ph  ->  ( R  e.  ZZ  /\ 
-.  P  ||  R
) )
3534simpld 112 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  ZZ )
3635zcnd 9394 . . . . . . . . . 10  |-  ( ph  ->  R  e.  CC )
3724, 27mulcld 7996 . . . . . . . . . 10  |-  ( ph  ->  ( ( P ^
( N  -  M
) )  x.  T
)  e.  CC )
38 pcaddlem.6 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  e.  NN  /\ 
-.  P  ||  S
) )
3938simpld 112 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  NN )
4039nncnd 8951 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  CC )
4139nnap0d 8983 . . . . . . . . . . 11  |-  ( ph  ->  S #  0 )
4240, 41jca 306 . . . . . . . . . 10  |-  ( ph  ->  ( S  e.  CC  /\  S #  0 ) )
4330, 31jca 306 . . . . . . . . . 10  |-  ( ph  ->  ( U  e.  CC  /\  U #  0 ) )
44 divadddivap 8702 . . . . . . . . . 10  |-  ( ( ( R  e.  CC  /\  ( ( P ^
( N  -  M
) )  x.  T
)  e.  CC )  /\  ( ( S  e.  CC  /\  S #  0 )  /\  ( U  e.  CC  /\  U #  0 ) ) )  ->  ( ( R  /  S )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  /  U
) )  =  ( ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  /  ( S  x.  U ) ) )
4536, 37, 42, 43, 44syl22anc 1250 . . . . . . . . 9  |-  ( ph  ->  ( ( R  /  S )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  /  U ) )  =  ( ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  /  ( S  x.  U ) ) )
4633, 45eqtr3d 2224 . . . . . . . 8  |-  ( ph  ->  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  =  ( ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  /  ( S  x.  U ) ) )
4746oveq2d 5907 . . . . . . 7  |-  ( ph  ->  ( P  pCnt  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  ( P 
pCnt  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  / 
( S  x.  U
) ) ) )
4847adantr 276 . . . . . 6  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  =  ( P  pCnt  ( (
( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  /  ( S  x.  U ) ) ) )
498adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  P  e.  Prime )
5029nnzd 9392 . . . . . . . . . 10  |-  ( ph  ->  U  e.  ZZ )
5135, 50zmulcld 9399 . . . . . . . . 9  |-  ( ph  ->  ( R  x.  U
)  e.  ZZ )
52 uznn0sub 9577 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  -  M )  e.  NN0 )
531, 52syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  -  M
)  e.  NN0 )
5418, 53nnexpcld 10694 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ ( N  -  M )
)  e.  NN )
5554nnzd 9392 . . . . . . . . . . 11  |-  ( ph  ->  ( P ^ ( N  -  M )
)  e.  ZZ )
5655, 26zmulcld 9399 . . . . . . . . . 10  |-  ( ph  ->  ( ( P ^
( N  -  M
) )  x.  T
)  e.  ZZ )
5739nnzd 9392 . . . . . . . . . 10  |-  ( ph  ->  S  e.  ZZ )
5856, 57zmulcld 9399 . . . . . . . . 9  |-  ( ph  ->  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
)  e.  ZZ )
5951, 58zaddcld 9397 . . . . . . . 8  |-  ( ph  ->  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  e.  ZZ )
6059adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  e.  ZZ )
6119, 20, 3expclzapd 10677 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P ^ M
)  e.  CC )
6261mul01d 8368 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ^ M )  x.  0 )  =  0 )
63 oveq2 5899 . . . . . . . . . . . . 13  |-  ( ( ( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) )  =  0  ->  (
( P ^ M
)  x.  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) )  =  ( ( P ^ M )  x.  0 ) )
6463eqeq1d 2198 . . . . . . . . . . . 12  |-  ( ( ( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) )  =  0  ->  (
( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  0  <->  (
( P ^ M
)  x.  0 )  =  0 ) )
6562, 64syl5ibrcom 157 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  =  0  -> 
( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  0 ) )
6665necon3d 2404 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( P ^ M )  x.  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  =/=  0  ->  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  =/=  0 ) )
6736, 40, 41divclapd 8765 . . . . . . . . . . . . 13  |-  ( ph  ->  ( R  /  S
)  e.  CC )
6827, 30, 31divclapd 8765 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  /  U
)  e.  CC )
6924, 68mulcld 7996 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) )  e.  CC )
7061, 67, 69adddid 8000 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  ( ( ( P ^ M
)  x.  ( R  /  S ) )  +  ( ( P ^ M )  x.  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) )
71 pcaddlem.2 . . . . . . . . . . . . 13  |-  ( ph  ->  A  =  ( ( P ^ M )  x.  ( R  /  S ) ) )
72 pcaddlem.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  =  ( ( P ^ N )  x.  ( T  /  U ) ) )
733zcnd 9394 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  M  e.  CC )
7422zcnd 9394 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  CC )
7573, 74pncan3d 8289 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M  +  ( N  -  M ) )  =  N )
7675oveq2d 5907 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( P ^ ( M  +  ( N  -  M ) ) )  =  ( P ^ N ) )
77 expaddzap 10582 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( M  e.  ZZ  /\  ( N  -  M
)  e.  ZZ ) )  ->  ( P ^ ( M  +  ( N  -  M
) ) )  =  ( ( P ^ M )  x.  ( P ^ ( N  -  M ) ) ) )
7819, 20, 3, 23, 77syl22anc 1250 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( P ^ ( M  +  ( N  -  M ) ) )  =  ( ( P ^ M )  x.  ( P ^ ( N  -  M )
) ) )
7976, 78eqtr3d 2224 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( P ^ N
)  =  ( ( P ^ M )  x.  ( P ^
( N  -  M
) ) ) )
8079oveq1d 5906 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( P ^ N )  x.  ( T  /  U ) )  =  ( ( ( P ^ M )  x.  ( P ^
( N  -  M
) ) )  x.  ( T  /  U
) ) )
8161, 24, 68mulassd 7999 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( P ^ M )  x.  ( P ^ ( N  -  M )
) )  x.  ( T  /  U ) )  =  ( ( P ^ M )  x.  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) )
8272, 80, 813eqtrd 2226 . . . . . . . . . . . . 13  |-  ( ph  ->  B  =  ( ( P ^ M )  x.  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) )
8371, 82oveq12d 5909 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  +  B
)  =  ( ( ( P ^ M
)  x.  ( R  /  S ) )  +  ( ( P ^ M )  x.  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) )
8470, 83eqtr4d 2225 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  ( A  +  B ) )
8584neeq1d 2378 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( P ^ M )  x.  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  =/=  0  <->  ( A  +  B )  =/=  0 ) )
8646neeq1d 2378 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  =/=  0  <->  (
( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  /  ( S  x.  U ) )  =/=  0 ) )
8766, 85, 863imtr3d 202 . . . . . . . . 9  |-  ( ph  ->  ( ( A  +  B )  =/=  0  ->  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) )  /  ( S  x.  U )
)  =/=  0 ) )
8839, 29nnmulcld 8986 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  x.  U
)  e.  NN )
8988nncnd 8951 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  x.  U
)  e.  CC )
9040, 30, 41, 31mulap0d 8633 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  x.  U
) #  0 )
9189, 90div0apd 8762 . . . . . . . . . . 11  |-  ( ph  ->  ( 0  /  ( S  x.  U )
)  =  0 )
92 oveq1 5898 . . . . . . . . . . . 12  |-  ( ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  =  0  ->  (
( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  /  ( S  x.  U ) )  =  ( 0  / 
( S  x.  U
) ) )
9392eqeq1d 2198 . . . . . . . . . . 11  |-  ( ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  =  0  ->  (
( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) )  /  ( S  x.  U )
)  =  0  <->  (
0  /  ( S  x.  U ) )  =  0 ) )
9491, 93syl5ibrcom 157 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) )  =  0  ->  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  / 
( S  x.  U
) )  =  0 ) )
9594necon3d 2404 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  / 
( S  x.  U
) )  =/=  0  ->  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  =/=  0 ) )
9687, 95syld 45 . . . . . . . 8  |-  ( ph  ->  ( ( A  +  B )  =/=  0  ->  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  =/=  0 ) )
9796imp 124 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  =/=  0 )
9888adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( S  x.  U )  e.  NN )
99 pcdiv 12320 . . . . . . 7  |-  ( ( P  e.  Prime  /\  (
( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  e.  ZZ  /\  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  =/=  0 )  /\  ( S  x.  U )  e.  NN )  ->  ( P  pCnt  ( ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  /  ( S  x.  U ) ) )  =  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) ) )  -  ( P  pCnt  ( S  x.  U ) ) ) )
10049, 60, 97, 98, 99syl121anc 1254 . . . . . 6  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) )  /  ( S  x.  U )
) )  =  ( ( P  pCnt  (
( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) ) )  -  ( P 
pCnt  ( S  x.  U ) ) ) )
10139nnne0d 8982 . . . . . . . . . . 11  |-  ( ph  ->  S  =/=  0 )
10229nnne0d 8982 . . . . . . . . . . 11  |-  ( ph  ->  U  =/=  0 )
103 pcmul 12319 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( S  e.  ZZ  /\  S  =/=  0 )  /\  ( U  e.  ZZ  /\  U  =/=  0 ) )  -> 
( P  pCnt  ( S  x.  U )
)  =  ( ( P  pCnt  S )  +  ( P  pCnt  U ) ) )
1048, 57, 101, 50, 102, 103syl122anc 1258 . . . . . . . . . 10  |-  ( ph  ->  ( P  pCnt  ( S  x.  U )
)  =  ( ( P  pCnt  S )  +  ( P  pCnt  U ) ) )
10538simprd 114 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  P  ||  S
)
106 pceq0 12339 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  S  e.  NN )  ->  (
( P  pCnt  S
)  =  0  <->  -.  P  ||  S ) )
1078, 39, 106syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( P  pCnt  S )  =  0  <->  -.  P  ||  S ) )
108105, 107mpbird 167 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  pCnt  S
)  =  0 )
10928simprd 114 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  P  ||  U
)
110 pceq0 12339 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  U  e.  NN )  ->  (
( P  pCnt  U
)  =  0  <->  -.  P  ||  U ) )
1118, 29, 110syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( P  pCnt  U )  =  0  <->  -.  P  ||  U ) )
112109, 111mpbird 167 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  pCnt  U
)  =  0 )
113108, 112oveq12d 5909 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  pCnt  S )  +  ( P 
pCnt  U ) )  =  ( 0  +  0 ) )
114 00id 8116 . . . . . . . . . . 11  |-  ( 0  +  0 )  =  0
115113, 114eqtrdi 2238 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  pCnt  S )  +  ( P 
pCnt  U ) )  =  0 )
116104, 115eqtrd 2222 . . . . . . . . 9  |-  ( ph  ->  ( P  pCnt  ( S  x.  U )
)  =  0 )
117116oveq2d 5907 . . . . . . . 8  |-  ( ph  ->  ( ( P  pCnt  ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) ) )  -  ( P 
pCnt  ( S  x.  U ) ) )  =  ( ( P 
pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) )  - 
0 ) )
118117adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) )  -  ( P  pCnt  ( S  x.  U ) ) )  =  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) ) )  -  0 ) )
119 pczcl 12316 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  (
( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  e.  ZZ  /\  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  =/=  0 ) )  ->  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) ) )  e.  NN0 )
12049, 60, 97, 119syl12anc 1247 . . . . . . . . 9  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) ) )  e.  NN0 )
121120nn0cnd 9249 . . . . . . . 8  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) ) )  e.  CC )
122121subid1d 8275 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) )  - 
0 )  =  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) ) ) )
123118, 122eqtrd 2222 . . . . . 6  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) )  -  ( P  pCnt  ( S  x.  U ) ) )  =  ( P 
pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) ) )
12448, 100, 1233eqtrd 2226 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  =  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) ) ) )
125124, 120eqeltrd 2266 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  e.  NN0 )
126 nn0addge1 9240 . . . 4  |-  ( ( M  e.  RR  /\  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) )  e.  NN0 )  ->  M  <_  ( M  +  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) ) ) )
12716, 125, 126syl2anc 411 . . 3  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  M  <_  ( M  +  ( P 
pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) ) )
128 nnq 9651 . . . . . . . 8  |-  ( P  e.  NN  ->  P  e.  QQ )
12918, 128syl 14 . . . . . . 7  |-  ( ph  ->  P  e.  QQ )
13018nnne0d 8982 . . . . . . 7  |-  ( ph  ->  P  =/=  0 )
131 qexpclz 10559 . . . . . . 7  |-  ( ( P  e.  QQ  /\  P  =/=  0  /\  M  e.  ZZ )  ->  ( P ^ M )  e.  QQ )
132129, 130, 3, 131syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( P ^ M
)  e.  QQ )
133132adantr 276 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P ^ M )  e.  QQ )
13419, 20, 3expap0d 10678 . . . . . . 7  |-  ( ph  ->  ( P ^ M
) #  0 )
135 0z 9282 . . . . . . . . 9  |-  0  e.  ZZ
136 zq 9644 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
137135, 136mp1i 10 . . . . . . . 8  |-  ( ph  ->  0  e.  QQ )
138 qapne 9657 . . . . . . . 8  |-  ( ( ( P ^ M
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( P ^ M ) #  0  <->  ( P ^ M )  =/=  0
) )
139132, 137, 138syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( ( P ^ M ) #  0  <->  ( P ^ M )  =/=  0
) )
140134, 139mpbid 147 . . . . . 6  |-  ( ph  ->  ( P ^ M
)  =/=  0 )
141140adantr 276 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P ^ M )  =/=  0
)
142 znq 9642 . . . . . . . 8  |-  ( ( R  e.  ZZ  /\  S  e.  NN )  ->  ( R  /  S
)  e.  QQ )
14335, 39, 142syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( R  /  S
)  e.  QQ )
144 qexpclz 10559 . . . . . . . . 9  |-  ( ( P  e.  QQ  /\  P  =/=  0  /\  ( N  -  M )  e.  ZZ )  ->  ( P ^ ( N  -  M ) )  e.  QQ )
145129, 130, 23, 144syl3anc 1249 . . . . . . . 8  |-  ( ph  ->  ( P ^ ( N  -  M )
)  e.  QQ )
146 znq 9642 . . . . . . . . 9  |-  ( ( T  e.  ZZ  /\  U  e.  NN )  ->  ( T  /  U
)  e.  QQ )
14726, 29, 146syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( T  /  U
)  e.  QQ )
148 qmulcl 9655 . . . . . . . 8  |-  ( ( ( P ^ ( N  -  M )
)  e.  QQ  /\  ( T  /  U
)  e.  QQ )  ->  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) )  e.  QQ )
149145, 147, 148syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) )  e.  QQ )
150 qaddcl 9653 . . . . . . 7  |-  ( ( ( R  /  S
)  e.  QQ  /\  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) )  e.  QQ )  -> 
( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  e.  QQ )
151143, 149, 150syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  e.  QQ )
152151adantr 276 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  e.  QQ )
15385, 66sylbird 170 . . . . . 6  |-  ( ph  ->  ( ( A  +  B )  =/=  0  ->  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  =/=  0 ) )
154153imp 124 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  =/=  0 )
155 pcqmul 12321 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( P ^ M
)  e.  QQ  /\  ( P ^ M )  =/=  0 )  /\  ( ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  e.  QQ  /\  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  =/=  0 ) )  ->  ( P  pCnt  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) )  =  ( ( P  pCnt  ( P ^ M ) )  +  ( P  pCnt  ( ( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) ) )
15649, 133, 141, 152, 154, 155syl122anc 1258 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) )  =  ( ( P  pCnt  ( P ^ M ) )  +  ( P  pCnt  ( ( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) ) )
15784oveq2d 5907 . . . . 5  |-  ( ph  ->  ( P  pCnt  (
( P ^ M
)  x.  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) ) )  =  ( P 
pCnt  ( A  +  B ) ) )
158157adantr 276 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) )  =  ( P  pCnt  ( A  +  B ) ) )
159 pcid 12341 . . . . . . 7  |-  ( ( P  e.  Prime  /\  M  e.  ZZ )  ->  ( P  pCnt  ( P ^ M ) )  =  M )
1608, 3, 159syl2anc 411 . . . . . 6  |-  ( ph  ->  ( P  pCnt  ( P ^ M ) )  =  M )
161160oveq1d 5906 . . . . 5  |-  ( ph  ->  ( ( P  pCnt  ( P ^ M ) )  +  ( P 
pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) )  =  ( M  +  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) ) )
162161adantr 276 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( P  pCnt  ( P ^ M ) )  +  ( P  pCnt  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) )  =  ( M  +  ( P 
pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) ) )
163156, 158, 1623eqtr3d 2230 . . 3  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( A  +  B
) )  =  ( M  +  ( P 
pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) ) )
164127, 163breqtrrd 4046 . 2  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  M  <_  ( P  pCnt  ( A  +  B ) ) )
165 qmulcl 9655 . . . . . . 7  |-  ( ( ( P ^ M
)  e.  QQ  /\  ( R  /  S
)  e.  QQ )  ->  ( ( P ^ M )  x.  ( R  /  S
) )  e.  QQ )
166132, 143, 165syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( P ^ M )  x.  ( R  /  S ) )  e.  QQ )
16771, 166eqeltrd 2266 . . . . 5  |-  ( ph  ->  A  e.  QQ )
168 qexpclz 10559 . . . . . . . 8  |-  ( ( P  e.  QQ  /\  P  =/=  0  /\  N  e.  ZZ )  ->  ( P ^ N )  e.  QQ )
169129, 130, 22, 168syl3anc 1249 . . . . . . 7  |-  ( ph  ->  ( P ^ N
)  e.  QQ )
170 qmulcl 9655 . . . . . . 7  |-  ( ( ( P ^ N
)  e.  QQ  /\  ( T  /  U
)  e.  QQ )  ->  ( ( P ^ N )  x.  ( T  /  U
) )  e.  QQ )
171169, 147, 170syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( P ^ N )  x.  ( T  /  U ) )  e.  QQ )
17272, 171eqeltrd 2266 . . . . 5  |-  ( ph  ->  B  e.  QQ )
173 qaddcl 9653 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B
)  e.  QQ )
174167, 172, 173syl2anc 411 . . . 4  |-  ( ph  ->  ( A  +  B
)  e.  QQ )
175 qdceq 10265 . . . 4  |-  ( ( ( A  +  B
)  e.  QQ  /\  0  e.  QQ )  -> DECID  ( A  +  B )  =  0 )
176174, 137, 175syl2anc 411 . . 3  |-  ( ph  -> DECID  ( A  +  B )  =  0 )
177 dcne 2371 . . 3  |-  (DECID  ( A  +  B )  =  0  <->  ( ( A  +  B )  =  0  \/  ( A  +  B )  =/=  0 ) )
178176, 177sylib 122 . 2  |-  ( ph  ->  ( ( A  +  B )  =  0  \/  ( A  +  B )  =/=  0
) )
17915, 164, 178mpjaodan 799 1  |-  ( ph  ->  M  <_  ( P  pCnt  ( A  +  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2160    =/= wne 2360   class class class wbr 4018   ` cfv 5231  (class class class)co 5891   CCcc 7827   RRcr 7828   0cc0 7829    + caddc 7832    x. cmul 7834   +oocpnf 8007   RR*cxr 8009    <_ cle 8011    - cmin 8146   # cap 8556    / cdiv 8647   NNcn 8937   NN0cn0 9194   ZZcz 9271   ZZ>=cuz 9546   QQcq 9637   ^cexp 10537    || cdvds 11812   Primecprime 12125    pCnt cpc 12302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947  ax-arch 7948  ax-caucvg 7949
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-isom 5240  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-1o 6435  df-2o 6436  df-er 6553  df-en 6759  df-sup 7001  df-inf 7002  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-n0 9195  df-z 9272  df-uz 9547  df-q 9638  df-rp 9672  df-fz 10027  df-fzo 10161  df-fl 10288  df-mod 10341  df-seqfrec 10464  df-exp 10538  df-cj 10869  df-re 10870  df-im 10871  df-rsqrt 11025  df-abs 11026  df-dvds 11813  df-gcd 11962  df-prm 12126  df-pc 12303
This theorem is referenced by:  pcadd  12357
  Copyright terms: Public domain W3C validator