ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcaddlem Unicode version

Theorem pcaddlem 12247
Description: Lemma for pcadd 12248. The original numbers  A and  B have been decomposed using the prime count function as  ( P ^ M )  x.  ( R  /  S ) where  R ,  S are both not divisible by  P and  M  =  ( P  pCnt  A ), and similarly for  B. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
pcaddlem.1  |-  ( ph  ->  P  e.  Prime )
pcaddlem.2  |-  ( ph  ->  A  =  ( ( P ^ M )  x.  ( R  /  S ) ) )
pcaddlem.3  |-  ( ph  ->  B  =  ( ( P ^ N )  x.  ( T  /  U ) ) )
pcaddlem.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
pcaddlem.5  |-  ( ph  ->  ( R  e.  ZZ  /\ 
-.  P  ||  R
) )
pcaddlem.6  |-  ( ph  ->  ( S  e.  NN  /\ 
-.  P  ||  S
) )
pcaddlem.7  |-  ( ph  ->  ( T  e.  ZZ  /\ 
-.  P  ||  T
) )
pcaddlem.8  |-  ( ph  ->  ( U  e.  NN  /\ 
-.  P  ||  U
) )
Assertion
Ref Expression
pcaddlem  |-  ( ph  ->  M  <_  ( P  pCnt  ( A  +  B
) ) )

Proof of Theorem pcaddlem
StepHypRef Expression
1 pcaddlem.4 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzel2 9462 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
43zred 9304 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
54rexrd 7939 . . . . . 6  |-  ( ph  ->  M  e.  RR* )
6 pnfge 9716 . . . . . 6  |-  ( M  e.  RR*  ->  M  <_ +oo )
75, 6syl 14 . . . . 5  |-  ( ph  ->  M  <_ +oo )
8 pcaddlem.1 . . . . . 6  |-  ( ph  ->  P  e.  Prime )
9 pc0 12213 . . . . . 6  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
108, 9syl 14 . . . . 5  |-  ( ph  ->  ( P  pCnt  0
)  = +oo )
117, 10breqtrrd 4004 . . . 4  |-  ( ph  ->  M  <_  ( P  pCnt  0 ) )
1211adantr 274 . . 3  |-  ( (
ph  /\  ( A  +  B )  =  0 )  ->  M  <_  ( P  pCnt  0 ) )
13 simpr 109 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =  0 )  ->  ( A  +  B )  =  0 )
1413oveq2d 5852 . . 3  |-  ( (
ph  /\  ( A  +  B )  =  0 )  ->  ( P  pCnt  ( A  +  B
) )  =  ( P  pCnt  0 ) )
1512, 14breqtrrd 4004 . 2  |-  ( (
ph  /\  ( A  +  B )  =  0 )  ->  M  <_  ( P  pCnt  ( A  +  B ) ) )
164adantr 274 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  M  e.  RR )
17 prmnn 12021 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  NN )
188, 17syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  NN )
1918nncnd 8862 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  CC )
2018nnap0d 8894 . . . . . . . . . . . 12  |-  ( ph  ->  P #  0 )
21 eluzelz 9466 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
221, 21syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ZZ )
2322, 3zsubcld 9309 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  -  M
)  e.  ZZ )
2419, 20, 23expclzapd 10582 . . . . . . . . . . 11  |-  ( ph  ->  ( P ^ ( N  -  M )
)  e.  CC )
25 pcaddlem.7 . . . . . . . . . . . . 13  |-  ( ph  ->  ( T  e.  ZZ  /\ 
-.  P  ||  T
) )
2625simpld 111 . . . . . . . . . . . 12  |-  ( ph  ->  T  e.  ZZ )
2726zcnd 9305 . . . . . . . . . . 11  |-  ( ph  ->  T  e.  CC )
28 pcaddlem.8 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U  e.  NN  /\ 
-.  P  ||  U
) )
2928simpld 111 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  NN )
3029nncnd 8862 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  CC )
3129nnap0d 8894 . . . . . . . . . . 11  |-  ( ph  ->  U #  0 )
3224, 27, 30, 31divassapd 8713 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( P ^ ( N  -  M ) )  x.  T )  /  U
)  =  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) )
3332oveq2d 5852 . . . . . . . . 9  |-  ( ph  ->  ( ( R  /  S )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  /  U ) )  =  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) )
34 pcaddlem.5 . . . . . . . . . . . 12  |-  ( ph  ->  ( R  e.  ZZ  /\ 
-.  P  ||  R
) )
3534simpld 111 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  ZZ )
3635zcnd 9305 . . . . . . . . . 10  |-  ( ph  ->  R  e.  CC )
3724, 27mulcld 7910 . . . . . . . . . 10  |-  ( ph  ->  ( ( P ^
( N  -  M
) )  x.  T
)  e.  CC )
38 pcaddlem.6 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  e.  NN  /\ 
-.  P  ||  S
) )
3938simpld 111 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  NN )
4039nncnd 8862 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  CC )
4139nnap0d 8894 . . . . . . . . . . 11  |-  ( ph  ->  S #  0 )
4240, 41jca 304 . . . . . . . . . 10  |-  ( ph  ->  ( S  e.  CC  /\  S #  0 ) )
4330, 31jca 304 . . . . . . . . . 10  |-  ( ph  ->  ( U  e.  CC  /\  U #  0 ) )
44 divadddivap 8614 . . . . . . . . . 10  |-  ( ( ( R  e.  CC  /\  ( ( P ^
( N  -  M
) )  x.  T
)  e.  CC )  /\  ( ( S  e.  CC  /\  S #  0 )  /\  ( U  e.  CC  /\  U #  0 ) ) )  ->  ( ( R  /  S )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  /  U
) )  =  ( ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  /  ( S  x.  U ) ) )
4536, 37, 42, 43, 44syl22anc 1228 . . . . . . . . 9  |-  ( ph  ->  ( ( R  /  S )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  /  U ) )  =  ( ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  /  ( S  x.  U ) ) )
4633, 45eqtr3d 2199 . . . . . . . 8  |-  ( ph  ->  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  =  ( ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  /  ( S  x.  U ) ) )
4746oveq2d 5852 . . . . . . 7  |-  ( ph  ->  ( P  pCnt  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  ( P 
pCnt  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  / 
( S  x.  U
) ) ) )
4847adantr 274 . . . . . 6  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  =  ( P  pCnt  ( (
( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  /  ( S  x.  U ) ) ) )
498adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  P  e.  Prime )
5029nnzd 9303 . . . . . . . . . 10  |-  ( ph  ->  U  e.  ZZ )
5135, 50zmulcld 9310 . . . . . . . . 9  |-  ( ph  ->  ( R  x.  U
)  e.  ZZ )
52 uznn0sub 9488 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  -  M )  e.  NN0 )
531, 52syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  -  M
)  e.  NN0 )
5418, 53nnexpcld 10599 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ ( N  -  M )
)  e.  NN )
5554nnzd 9303 . . . . . . . . . . 11  |-  ( ph  ->  ( P ^ ( N  -  M )
)  e.  ZZ )
5655, 26zmulcld 9310 . . . . . . . . . 10  |-  ( ph  ->  ( ( P ^
( N  -  M
) )  x.  T
)  e.  ZZ )
5739nnzd 9303 . . . . . . . . . 10  |-  ( ph  ->  S  e.  ZZ )
5856, 57zmulcld 9310 . . . . . . . . 9  |-  ( ph  ->  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
)  e.  ZZ )
5951, 58zaddcld 9308 . . . . . . . 8  |-  ( ph  ->  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  e.  ZZ )
6059adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  e.  ZZ )
6119, 20, 3expclzapd 10582 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P ^ M
)  e.  CC )
6261mul01d 8282 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ^ M )  x.  0 )  =  0 )
63 oveq2 5844 . . . . . . . . . . . . 13  |-  ( ( ( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) )  =  0  ->  (
( P ^ M
)  x.  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) )  =  ( ( P ^ M )  x.  0 ) )
6463eqeq1d 2173 . . . . . . . . . . . 12  |-  ( ( ( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) )  =  0  ->  (
( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  0  <->  (
( P ^ M
)  x.  0 )  =  0 ) )
6562, 64syl5ibrcom 156 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  =  0  -> 
( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  0 ) )
6665necon3d 2378 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( P ^ M )  x.  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  =/=  0  ->  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  =/=  0 ) )
6736, 40, 41divclapd 8677 . . . . . . . . . . . . 13  |-  ( ph  ->  ( R  /  S
)  e.  CC )
6827, 30, 31divclapd 8677 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  /  U
)  e.  CC )
6924, 68mulcld 7910 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) )  e.  CC )
7061, 67, 69adddid 7914 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  ( ( ( P ^ M
)  x.  ( R  /  S ) )  +  ( ( P ^ M )  x.  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) )
71 pcaddlem.2 . . . . . . . . . . . . 13  |-  ( ph  ->  A  =  ( ( P ^ M )  x.  ( R  /  S ) ) )
72 pcaddlem.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  =  ( ( P ^ N )  x.  ( T  /  U ) ) )
733zcnd 9305 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  M  e.  CC )
7422zcnd 9305 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  CC )
7573, 74pncan3d 8203 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M  +  ( N  -  M ) )  =  N )
7675oveq2d 5852 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( P ^ ( M  +  ( N  -  M ) ) )  =  ( P ^ N ) )
77 expaddzap 10489 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( M  e.  ZZ  /\  ( N  -  M
)  e.  ZZ ) )  ->  ( P ^ ( M  +  ( N  -  M
) ) )  =  ( ( P ^ M )  x.  ( P ^ ( N  -  M ) ) ) )
7819, 20, 3, 23, 77syl22anc 1228 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( P ^ ( M  +  ( N  -  M ) ) )  =  ( ( P ^ M )  x.  ( P ^ ( N  -  M )
) ) )
7976, 78eqtr3d 2199 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( P ^ N
)  =  ( ( P ^ M )  x.  ( P ^
( N  -  M
) ) ) )
8079oveq1d 5851 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( P ^ N )  x.  ( T  /  U ) )  =  ( ( ( P ^ M )  x.  ( P ^
( N  -  M
) ) )  x.  ( T  /  U
) ) )
8161, 24, 68mulassd 7913 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( P ^ M )  x.  ( P ^ ( N  -  M )
) )  x.  ( T  /  U ) )  =  ( ( P ^ M )  x.  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) )
8272, 80, 813eqtrd 2201 . . . . . . . . . . . . 13  |-  ( ph  ->  B  =  ( ( P ^ M )  x.  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) )
8371, 82oveq12d 5854 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  +  B
)  =  ( ( ( P ^ M
)  x.  ( R  /  S ) )  +  ( ( P ^ M )  x.  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) )
8470, 83eqtr4d 2200 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  ( A  +  B ) )
8584neeq1d 2352 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( P ^ M )  x.  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  =/=  0  <->  ( A  +  B )  =/=  0 ) )
8646neeq1d 2352 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  =/=  0  <->  (
( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  /  ( S  x.  U ) )  =/=  0 ) )
8766, 85, 863imtr3d 201 . . . . . . . . 9  |-  ( ph  ->  ( ( A  +  B )  =/=  0  ->  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) )  /  ( S  x.  U )
)  =/=  0 ) )
8839, 29nnmulcld 8897 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  x.  U
)  e.  NN )
8988nncnd 8862 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  x.  U
)  e.  CC )
9040, 30, 41, 31mulap0d 8546 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  x.  U
) #  0 )
9189, 90div0apd 8674 . . . . . . . . . . 11  |-  ( ph  ->  ( 0  /  ( S  x.  U )
)  =  0 )
92 oveq1 5843 . . . . . . . . . . . 12  |-  ( ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  =  0  ->  (
( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  /  ( S  x.  U ) )  =  ( 0  / 
( S  x.  U
) ) )
9392eqeq1d 2173 . . . . . . . . . . 11  |-  ( ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  =  0  ->  (
( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) )  /  ( S  x.  U )
)  =  0  <->  (
0  /  ( S  x.  U ) )  =  0 ) )
9491, 93syl5ibrcom 156 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) )  =  0  ->  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  / 
( S  x.  U
) )  =  0 ) )
9594necon3d 2378 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  / 
( S  x.  U
) )  =/=  0  ->  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  =/=  0 ) )
9687, 95syld 45 . . . . . . . 8  |-  ( ph  ->  ( ( A  +  B )  =/=  0  ->  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  =/=  0 ) )
9796imp 123 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  =/=  0 )
9888adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( S  x.  U )  e.  NN )
99 pcdiv 12211 . . . . . . 7  |-  ( ( P  e.  Prime  /\  (
( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  e.  ZZ  /\  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  =/=  0 )  /\  ( S  x.  U )  e.  NN )  ->  ( P  pCnt  ( ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  /  ( S  x.  U ) ) )  =  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) ) )  -  ( P  pCnt  ( S  x.  U ) ) ) )
10049, 60, 97, 98, 99syl121anc 1232 . . . . . 6  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) )  /  ( S  x.  U )
) )  =  ( ( P  pCnt  (
( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) ) )  -  ( P 
pCnt  ( S  x.  U ) ) ) )
10139nnne0d 8893 . . . . . . . . . . 11  |-  ( ph  ->  S  =/=  0 )
10229nnne0d 8893 . . . . . . . . . . 11  |-  ( ph  ->  U  =/=  0 )
103 pcmul 12210 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( S  e.  ZZ  /\  S  =/=  0 )  /\  ( U  e.  ZZ  /\  U  =/=  0 ) )  -> 
( P  pCnt  ( S  x.  U )
)  =  ( ( P  pCnt  S )  +  ( P  pCnt  U ) ) )
1048, 57, 101, 50, 102, 103syl122anc 1236 . . . . . . . . . 10  |-  ( ph  ->  ( P  pCnt  ( S  x.  U )
)  =  ( ( P  pCnt  S )  +  ( P  pCnt  U ) ) )
10538simprd 113 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  P  ||  S
)
106 pceq0 12230 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  S  e.  NN )  ->  (
( P  pCnt  S
)  =  0  <->  -.  P  ||  S ) )
1078, 39, 106syl2anc 409 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( P  pCnt  S )  =  0  <->  -.  P  ||  S ) )
108105, 107mpbird 166 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  pCnt  S
)  =  0 )
10928simprd 113 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  P  ||  U
)
110 pceq0 12230 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  U  e.  NN )  ->  (
( P  pCnt  U
)  =  0  <->  -.  P  ||  U ) )
1118, 29, 110syl2anc 409 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( P  pCnt  U )  =  0  <->  -.  P  ||  U ) )
112109, 111mpbird 166 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  pCnt  U
)  =  0 )
113108, 112oveq12d 5854 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  pCnt  S )  +  ( P 
pCnt  U ) )  =  ( 0  +  0 ) )
114 00id 8030 . . . . . . . . . . 11  |-  ( 0  +  0 )  =  0
115113, 114eqtrdi 2213 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  pCnt  S )  +  ( P 
pCnt  U ) )  =  0 )
116104, 115eqtrd 2197 . . . . . . . . 9  |-  ( ph  ->  ( P  pCnt  ( S  x.  U )
)  =  0 )
117116oveq2d 5852 . . . . . . . 8  |-  ( ph  ->  ( ( P  pCnt  ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) ) )  -  ( P 
pCnt  ( S  x.  U ) ) )  =  ( ( P 
pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) )  - 
0 ) )
118117adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) )  -  ( P  pCnt  ( S  x.  U ) ) )  =  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) ) )  -  0 ) )
119 pczcl 12207 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  (
( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  e.  ZZ  /\  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  =/=  0 ) )  ->  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) ) )  e.  NN0 )
12049, 60, 97, 119syl12anc 1225 . . . . . . . . 9  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) ) )  e.  NN0 )
121120nn0cnd 9160 . . . . . . . 8  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) ) )  e.  CC )
122121subid1d 8189 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) )  - 
0 )  =  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) ) ) )
123118, 122eqtrd 2197 . . . . . 6  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) )  -  ( P  pCnt  ( S  x.  U ) ) )  =  ( P 
pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) ) )
12448, 100, 1233eqtrd 2201 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  =  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) ) ) )
125124, 120eqeltrd 2241 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  e.  NN0 )
126 nn0addge1 9151 . . . 4  |-  ( ( M  e.  RR  /\  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) )  e.  NN0 )  ->  M  <_  ( M  +  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) ) ) )
12716, 125, 126syl2anc 409 . . 3  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  M  <_  ( M  +  ( P 
pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) ) )
128 nnq 9562 . . . . . . . 8  |-  ( P  e.  NN  ->  P  e.  QQ )
12918, 128syl 14 . . . . . . 7  |-  ( ph  ->  P  e.  QQ )
13018nnne0d 8893 . . . . . . 7  |-  ( ph  ->  P  =/=  0 )
131 qexpclz 10466 . . . . . . 7  |-  ( ( P  e.  QQ  /\  P  =/=  0  /\  M  e.  ZZ )  ->  ( P ^ M )  e.  QQ )
132129, 130, 3, 131syl3anc 1227 . . . . . 6  |-  ( ph  ->  ( P ^ M
)  e.  QQ )
133132adantr 274 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P ^ M )  e.  QQ )
13419, 20, 3expap0d 10583 . . . . . . 7  |-  ( ph  ->  ( P ^ M
) #  0 )
135 0z 9193 . . . . . . . . 9  |-  0  e.  ZZ
136 zq 9555 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
137135, 136mp1i 10 . . . . . . . 8  |-  ( ph  ->  0  e.  QQ )
138 qapne 9568 . . . . . . . 8  |-  ( ( ( P ^ M
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( P ^ M ) #  0  <->  ( P ^ M )  =/=  0
) )
139132, 137, 138syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( ( P ^ M ) #  0  <->  ( P ^ M )  =/=  0
) )
140134, 139mpbid 146 . . . . . 6  |-  ( ph  ->  ( P ^ M
)  =/=  0 )
141140adantr 274 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P ^ M )  =/=  0
)
142 znq 9553 . . . . . . . 8  |-  ( ( R  e.  ZZ  /\  S  e.  NN )  ->  ( R  /  S
)  e.  QQ )
14335, 39, 142syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( R  /  S
)  e.  QQ )
144 qexpclz 10466 . . . . . . . . 9  |-  ( ( P  e.  QQ  /\  P  =/=  0  /\  ( N  -  M )  e.  ZZ )  ->  ( P ^ ( N  -  M ) )  e.  QQ )
145129, 130, 23, 144syl3anc 1227 . . . . . . . 8  |-  ( ph  ->  ( P ^ ( N  -  M )
)  e.  QQ )
146 znq 9553 . . . . . . . . 9  |-  ( ( T  e.  ZZ  /\  U  e.  NN )  ->  ( T  /  U
)  e.  QQ )
14726, 29, 146syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( T  /  U
)  e.  QQ )
148 qmulcl 9566 . . . . . . . 8  |-  ( ( ( P ^ ( N  -  M )
)  e.  QQ  /\  ( T  /  U
)  e.  QQ )  ->  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) )  e.  QQ )
149145, 147, 148syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) )  e.  QQ )
150 qaddcl 9564 . . . . . . 7  |-  ( ( ( R  /  S
)  e.  QQ  /\  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) )  e.  QQ )  -> 
( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  e.  QQ )
151143, 149, 150syl2anc 409 . . . . . 6  |-  ( ph  ->  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  e.  QQ )
152151adantr 274 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  e.  QQ )
15385, 66sylbird 169 . . . . . 6  |-  ( ph  ->  ( ( A  +  B )  =/=  0  ->  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  =/=  0 ) )
154153imp 123 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  =/=  0 )
155 pcqmul 12212 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( P ^ M
)  e.  QQ  /\  ( P ^ M )  =/=  0 )  /\  ( ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  e.  QQ  /\  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  =/=  0 ) )  ->  ( P  pCnt  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) )  =  ( ( P  pCnt  ( P ^ M ) )  +  ( P  pCnt  ( ( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) ) )
15649, 133, 141, 152, 154, 155syl122anc 1236 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) )  =  ( ( P  pCnt  ( P ^ M ) )  +  ( P  pCnt  ( ( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) ) )
15784oveq2d 5852 . . . . 5  |-  ( ph  ->  ( P  pCnt  (
( P ^ M
)  x.  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) ) )  =  ( P 
pCnt  ( A  +  B ) ) )
158157adantr 274 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) )  =  ( P  pCnt  ( A  +  B ) ) )
159 pcid 12232 . . . . . . 7  |-  ( ( P  e.  Prime  /\  M  e.  ZZ )  ->  ( P  pCnt  ( P ^ M ) )  =  M )
1608, 3, 159syl2anc 409 . . . . . 6  |-  ( ph  ->  ( P  pCnt  ( P ^ M ) )  =  M )
161160oveq1d 5851 . . . . 5  |-  ( ph  ->  ( ( P  pCnt  ( P ^ M ) )  +  ( P 
pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) )  =  ( M  +  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) ) )
162161adantr 274 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( P  pCnt  ( P ^ M ) )  +  ( P  pCnt  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) )  =  ( M  +  ( P 
pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) ) )
163156, 158, 1623eqtr3d 2205 . . 3  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( A  +  B
) )  =  ( M  +  ( P 
pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) ) )
164127, 163breqtrrd 4004 . 2  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  M  <_  ( P  pCnt  ( A  +  B ) ) )
165 qmulcl 9566 . . . . . . 7  |-  ( ( ( P ^ M
)  e.  QQ  /\  ( R  /  S
)  e.  QQ )  ->  ( ( P ^ M )  x.  ( R  /  S
) )  e.  QQ )
166132, 143, 165syl2anc 409 . . . . . 6  |-  ( ph  ->  ( ( P ^ M )  x.  ( R  /  S ) )  e.  QQ )
16771, 166eqeltrd 2241 . . . . 5  |-  ( ph  ->  A  e.  QQ )
168 qexpclz 10466 . . . . . . . 8  |-  ( ( P  e.  QQ  /\  P  =/=  0  /\  N  e.  ZZ )  ->  ( P ^ N )  e.  QQ )
169129, 130, 22, 168syl3anc 1227 . . . . . . 7  |-  ( ph  ->  ( P ^ N
)  e.  QQ )
170 qmulcl 9566 . . . . . . 7  |-  ( ( ( P ^ N
)  e.  QQ  /\  ( T  /  U
)  e.  QQ )  ->  ( ( P ^ N )  x.  ( T  /  U
) )  e.  QQ )
171169, 147, 170syl2anc 409 . . . . . 6  |-  ( ph  ->  ( ( P ^ N )  x.  ( T  /  U ) )  e.  QQ )
17272, 171eqeltrd 2241 . . . . 5  |-  ( ph  ->  B  e.  QQ )
173 qaddcl 9564 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B
)  e.  QQ )
174167, 172, 173syl2anc 409 . . . 4  |-  ( ph  ->  ( A  +  B
)  e.  QQ )
175 qdceq 10172 . . . 4  |-  ( ( ( A  +  B
)  e.  QQ  /\  0  e.  QQ )  -> DECID  ( A  +  B )  =  0 )
176174, 137, 175syl2anc 409 . . 3  |-  ( ph  -> DECID  ( A  +  B )  =  0 )
177 dcne 2345 . . 3  |-  (DECID  ( A  +  B )  =  0  <->  ( ( A  +  B )  =  0  \/  ( A  +  B )  =/=  0 ) )
178176, 177sylib 121 . 2  |-  ( ph  ->  ( ( A  +  B )  =  0  \/  ( A  +  B )  =/=  0
) )
17915, 164, 178mpjaodan 788 1  |-  ( ph  ->  M  <_  ( P  pCnt  ( A  +  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    = wceq 1342    e. wcel 2135    =/= wne 2334   class class class wbr 3976   ` cfv 5182  (class class class)co 5836   CCcc 7742   RRcr 7743   0cc0 7744    + caddc 7747    x. cmul 7749   +oocpnf 7921   RR*cxr 7923    <_ cle 7925    - cmin 8060   # cap 8470    / cdiv 8559   NNcn 8848   NN0cn0 9105   ZZcz 9182   ZZ>=cuz 9457   QQcq 9548   ^cexp 10444    || cdvds 11713   Primecprime 12018    pCnt cpc 12193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-1o 6375  df-2o 6376  df-er 6492  df-en 6698  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fz 9936  df-fzo 10068  df-fl 10195  df-mod 10248  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-dvds 11714  df-gcd 11861  df-prm 12019  df-pc 12194
This theorem is referenced by:  pcadd  12248
  Copyright terms: Public domain W3C validator