ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcneg Unicode version

Theorem pcneg 12307
Description: The prime count of a negative number. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
pcneg  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) )

Proof of Theorem pcneg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9611 . . 3  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
2 zcn 9247 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
32ad2antrl 490 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  x  e.  CC )
4 nncn 8916 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  CC )
54ad2antll 491 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  y  e.  CC )
6 nnap0 8937 . . . . . . . . 9  |-  ( y  e.  NN  ->  y #  0 )
76ad2antll 491 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  y #  0
)
83, 5, 7divnegapd 8749 . . . . . . 7  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  -u ( x  /  y )  =  ( -u x  / 
y ) )
98oveq2d 5885 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( P  pCnt  -u ( x  / 
y ) )  =  ( P  pCnt  ( -u x  /  y ) ) )
10 neg0 8193 . . . . . . . . . 10  |-  -u 0  =  0
11 simpr 110 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  x  =  0 )
1211negeqd 8142 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  -u x  =  -u 0 )
1310, 12, 113eqtr4a 2236 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  -u x  =  x )
1413oveq1d 5884 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  ( -u x  /  y )  =  ( x  / 
y ) )
1514oveq2d 5885 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  ( P  pCnt  ( -u x  /  y ) )  =  ( P  pCnt  ( x  /  y ) ) )
16 simpll 527 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  P  e.  Prime )
17 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  x  e.  ZZ )
1817znegcld 9366 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  -u x  e.  ZZ )
19 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  x  =/=  0 )
202negne0bd 8251 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  (
x  =/=  0  <->  -u x  =/=  0 ) )
2117, 20syl 14 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  (
x  =/=  0  <->  -u x  =/=  0 ) )
2219, 21mpbid 147 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  -u x  =/=  0 )
23 eqid 2177 . . . . . . . . . . . 12  |-  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  -u x } ,  RR ,  <  )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  -u x } ,  RR ,  <  )
2423pczpre 12280 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( -u x  e.  ZZ  /\  -u x  =/=  0 ) )  ->  ( P  pCnt  -u x )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  -u x } ,  RR ,  <  ) )
2516, 18, 22, 24syl12anc 1236 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  -u x )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  -u x } ,  RR ,  <  ) )
26 eqid 2177 . . . . . . . . . . . . 13  |-  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  x } ,  RR ,  <  )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  x } ,  RR ,  <  )
2726pczpre 12280 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  =  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  x } ,  RR ,  <  )
)
28 prmz 12094 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  ZZ )
29 zexpcl 10521 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ZZ  /\  y  e.  NN0 )  -> 
( P ^ y
)  e.  ZZ )
3028, 29sylan 283 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  y  e.  NN0 )  ->  ( P ^ y )  e.  ZZ )
31 simpl 109 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  x  =/=  0 )  ->  x  e.  ZZ )
32 dvdsnegb 11799 . . . . . . . . . . . . . . . 16  |-  ( ( ( P ^ y
)  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( P ^
y )  ||  x  <->  ( P ^ y ) 
||  -u x ) )
3330, 31, 32syl2an 289 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  y  e.  NN0 )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( ( P ^ y )  ||  x 
<->  ( P ^ y
)  ||  -u x ) )
3433an32s 568 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( P ^ y
)  ||  x  <->  ( P ^ y )  ||  -u x ) )
3534rabbidva 2725 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  { y  e. 
NN0  |  ( P ^ y )  ||  x }  =  {
y  e.  NN0  | 
( P ^ y
)  ||  -u x }
)
3635supeq1d 6980 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  sup ( { y  e.  NN0  |  ( P ^ y )  ||  x } ,  RR ,  <  )  =  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  -u x } ,  RR ,  <  )
)
3727, 36eqtrd 2210 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  =  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  -u x } ,  RR ,  <  )
)
3816, 17, 19, 37syl12anc 1236 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  x )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  -u x } ,  RR ,  <  ) )
3925, 38eqtr4d 2213 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  -u x )  =  ( P  pCnt  x
) )
4039oveq1d 5884 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  (
( P  pCnt  -u x
)  -  ( P 
pCnt  y ) )  =  ( ( P 
pCnt  x )  -  ( P  pCnt  y ) ) )
41 simplrr 536 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  y  e.  NN )
42 pcdiv 12285 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( -u x  e.  ZZ  /\  -u x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  (
-u x  /  y
) )  =  ( ( P  pCnt  -u x
)  -  ( P 
pCnt  y ) ) )
4316, 18, 22, 41, 42syl121anc 1243 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  ( -u x  /  y ) )  =  ( ( P 
pCnt  -u x )  -  ( P  pCnt  y ) ) )
44 pcdiv 12285 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
4516, 17, 19, 41, 44syl121anc 1243 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  ( x  / 
y ) )  =  ( ( P  pCnt  x )  -  ( P 
pCnt  y ) ) )
4640, 43, 453eqtr4d 2220 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  ( -u x  /  y ) )  =  ( P  pCnt  ( x  /  y ) ) )
47 simprl 529 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  x  e.  ZZ )
48 0zd 9254 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  0  e.  ZZ )
49 zdceq 9317 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  0  e.  ZZ )  -> DECID  x  =  0 )
5047, 48, 49syl2anc 411 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  -> DECID  x  =  0
)
51 dcne 2358 . . . . . . . 8  |-  (DECID  x  =  0  <->  ( x  =  0  \/  x  =/=  0 ) )
5250, 51sylib 122 . . . . . . 7  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( x  =  0  \/  x  =/=  0 ) )
5315, 46, 52mpjaodan 798 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( P  pCnt  ( -u x  / 
y ) )  =  ( P  pCnt  (
x  /  y ) ) )
549, 53eqtrd 2210 . . . . 5  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( P  pCnt  -u ( x  / 
y ) )  =  ( P  pCnt  (
x  /  y ) ) )
55 negeq 8140 . . . . . . 7  |-  ( A  =  ( x  / 
y )  ->  -u A  =  -u ( x  / 
y ) )
5655oveq2d 5885 . . . . . 6  |-  ( A  =  ( x  / 
y )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  -u (
x  /  y ) ) )
57 oveq2 5877 . . . . . 6  |-  ( A  =  ( x  / 
y )  ->  ( P  pCnt  A )  =  ( P  pCnt  (
x  /  y ) ) )
5856, 57eqeq12d 2192 . . . . 5  |-  ( A  =  ( x  / 
y )  ->  (
( P  pCnt  -u A
)  =  ( P 
pCnt  A )  <->  ( P  pCnt  -u ( x  / 
y ) )  =  ( P  pCnt  (
x  /  y ) ) ) )
5954, 58syl5ibrcom 157 . . . 4  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( A  =  ( x  / 
y )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) ) )
6059rexlimdvva 2602 . . 3  |-  ( P  e.  Prime  ->  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) ) )
611, 60biimtrid 152 . 2  |-  ( P  e.  Prime  ->  ( A  e.  QQ  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) ) )
6261imp 124 1  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   E.wrex 2456   {crab 2459   class class class wbr 4000  (class class class)co 5869   supcsup 6975   CCcc 7800   RRcr 7801   0cc0 7802    < clt 7982    - cmin 8118   -ucneg 8119   # cap 8528    / cdiv 8618   NNcn 8908   NN0cn0 9165   ZZcz 9242   QQcq 9608   ^cexp 10505    || cdvds 11778   Primecprime 12090    pCnt cpc 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-prm 12091  df-pc 12268
This theorem is referenced by:  pcabs  12308  lgsneg  14092
  Copyright terms: Public domain W3C validator