ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcneg Unicode version

Theorem pcneg 12848
Description: The prime count of a negative number. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
pcneg  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) )

Proof of Theorem pcneg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9817 . . 3  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
2 zcn 9451 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
32ad2antrl 490 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  x  e.  CC )
4 nncn 9118 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  CC )
54ad2antll 491 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  y  e.  CC )
6 nnap0 9139 . . . . . . . . 9  |-  ( y  e.  NN  ->  y #  0 )
76ad2antll 491 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  y #  0
)
83, 5, 7divnegapd 8950 . . . . . . 7  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  -u ( x  /  y )  =  ( -u x  / 
y ) )
98oveq2d 6017 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( P  pCnt  -u ( x  / 
y ) )  =  ( P  pCnt  ( -u x  /  y ) ) )
10 neg0 8392 . . . . . . . . . 10  |-  -u 0  =  0
11 simpr 110 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  x  =  0 )
1211negeqd 8341 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  -u x  =  -u 0 )
1310, 12, 113eqtr4a 2288 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  -u x  =  x )
1413oveq1d 6016 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  ( -u x  /  y )  =  ( x  / 
y ) )
1514oveq2d 6017 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  ( P  pCnt  ( -u x  /  y ) )  =  ( P  pCnt  ( x  /  y ) ) )
16 simpll 527 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  P  e.  Prime )
17 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  x  e.  ZZ )
1817znegcld 9571 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  -u x  e.  ZZ )
19 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  x  =/=  0 )
202negne0bd 8450 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  (
x  =/=  0  <->  -u x  =/=  0 ) )
2117, 20syl 14 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  (
x  =/=  0  <->  -u x  =/=  0 ) )
2219, 21mpbid 147 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  -u x  =/=  0 )
23 eqid 2229 . . . . . . . . . . . 12  |-  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  -u x } ,  RR ,  <  )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  -u x } ,  RR ,  <  )
2423pczpre 12820 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( -u x  e.  ZZ  /\  -u x  =/=  0 ) )  ->  ( P  pCnt  -u x )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  -u x } ,  RR ,  <  ) )
2516, 18, 22, 24syl12anc 1269 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  -u x )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  -u x } ,  RR ,  <  ) )
26 eqid 2229 . . . . . . . . . . . . 13  |-  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  x } ,  RR ,  <  )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  x } ,  RR ,  <  )
2726pczpre 12820 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  =  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  x } ,  RR ,  <  )
)
28 prmz 12633 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  ZZ )
29 zexpcl 10776 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ZZ  /\  y  e.  NN0 )  -> 
( P ^ y
)  e.  ZZ )
3028, 29sylan 283 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  y  e.  NN0 )  ->  ( P ^ y )  e.  ZZ )
31 simpl 109 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  x  =/=  0 )  ->  x  e.  ZZ )
32 dvdsnegb 12319 . . . . . . . . . . . . . . . 16  |-  ( ( ( P ^ y
)  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( P ^
y )  ||  x  <->  ( P ^ y ) 
||  -u x ) )
3330, 31, 32syl2an 289 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  y  e.  NN0 )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( ( P ^ y )  ||  x 
<->  ( P ^ y
)  ||  -u x ) )
3433an32s 568 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( P ^ y
)  ||  x  <->  ( P ^ y )  ||  -u x ) )
3534rabbidva 2787 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  { y  e. 
NN0  |  ( P ^ y )  ||  x }  =  {
y  e.  NN0  | 
( P ^ y
)  ||  -u x }
)
3635supeq1d 7154 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  sup ( { y  e.  NN0  |  ( P ^ y )  ||  x } ,  RR ,  <  )  =  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  -u x } ,  RR ,  <  )
)
3727, 36eqtrd 2262 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  =  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  -u x } ,  RR ,  <  )
)
3816, 17, 19, 37syl12anc 1269 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  x )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  -u x } ,  RR ,  <  ) )
3925, 38eqtr4d 2265 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  -u x )  =  ( P  pCnt  x
) )
4039oveq1d 6016 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  (
( P  pCnt  -u x
)  -  ( P 
pCnt  y ) )  =  ( ( P 
pCnt  x )  -  ( P  pCnt  y ) ) )
41 simplrr 536 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  y  e.  NN )
42 pcdiv 12825 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( -u x  e.  ZZ  /\  -u x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  (
-u x  /  y
) )  =  ( ( P  pCnt  -u x
)  -  ( P 
pCnt  y ) ) )
4316, 18, 22, 41, 42syl121anc 1276 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  ( -u x  /  y ) )  =  ( ( P 
pCnt  -u x )  -  ( P  pCnt  y ) ) )
44 pcdiv 12825 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
4516, 17, 19, 41, 44syl121anc 1276 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  ( x  / 
y ) )  =  ( ( P  pCnt  x )  -  ( P 
pCnt  y ) ) )
4640, 43, 453eqtr4d 2272 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  ( -u x  /  y ) )  =  ( P  pCnt  ( x  /  y ) ) )
47 simprl 529 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  x  e.  ZZ )
48 0zd 9458 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  0  e.  ZZ )
49 zdceq 9522 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  0  e.  ZZ )  -> DECID  x  =  0 )
5047, 48, 49syl2anc 411 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  -> DECID  x  =  0
)
51 dcne 2411 . . . . . . . 8  |-  (DECID  x  =  0  <->  ( x  =  0  \/  x  =/=  0 ) )
5250, 51sylib 122 . . . . . . 7  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( x  =  0  \/  x  =/=  0 ) )
5315, 46, 52mpjaodan 803 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( P  pCnt  ( -u x  / 
y ) )  =  ( P  pCnt  (
x  /  y ) ) )
549, 53eqtrd 2262 . . . . 5  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( P  pCnt  -u ( x  / 
y ) )  =  ( P  pCnt  (
x  /  y ) ) )
55 negeq 8339 . . . . . . 7  |-  ( A  =  ( x  / 
y )  ->  -u A  =  -u ( x  / 
y ) )
5655oveq2d 6017 . . . . . 6  |-  ( A  =  ( x  / 
y )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  -u (
x  /  y ) ) )
57 oveq2 6009 . . . . . 6  |-  ( A  =  ( x  / 
y )  ->  ( P  pCnt  A )  =  ( P  pCnt  (
x  /  y ) ) )
5856, 57eqeq12d 2244 . . . . 5  |-  ( A  =  ( x  / 
y )  ->  (
( P  pCnt  -u A
)  =  ( P 
pCnt  A )  <->  ( P  pCnt  -u ( x  / 
y ) )  =  ( P  pCnt  (
x  /  y ) ) ) )
5954, 58syl5ibrcom 157 . . . 4  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( A  =  ( x  / 
y )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) ) )
6059rexlimdvva 2656 . . 3  |-  ( P  e.  Prime  ->  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) ) )
611, 60biimtrid 152 . 2  |-  ( P  e.  Prime  ->  ( A  e.  QQ  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) ) )
6261imp 124 1  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   E.wrex 2509   {crab 2512   class class class wbr 4083  (class class class)co 6001   supcsup 7149   CCcc 7997   RRcr 7998   0cc0 7999    < clt 8181    - cmin 8317   -ucneg 8318   # cap 8728    / cdiv 8819   NNcn 9110   NN0cn0 9369   ZZcz 9446   QQcq 9814   ^cexp 10760    || cdvds 12298   Primecprime 12629    pCnt cpc 12807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-2o 6563  df-er 6680  df-en 6888  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475  df-prm 12630  df-pc 12808
This theorem is referenced by:  pcabs  12849  pcadd2  12864  lgsneg  15703
  Copyright terms: Public domain W3C validator