ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcneg Unicode version

Theorem pcneg 12214
Description: The prime count of a negative number. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
pcneg  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) )

Proof of Theorem pcneg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9538 . . 3  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
2 zcn 9178 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
32ad2antrl 482 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  x  e.  CC )
4 nncn 8847 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  CC )
54ad2antll 483 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  y  e.  CC )
6 nnap0 8868 . . . . . . . . 9  |-  ( y  e.  NN  ->  y #  0 )
76ad2antll 483 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  y #  0
)
83, 5, 7divnegapd 8681 . . . . . . 7  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  -u ( x  /  y )  =  ( -u x  / 
y ) )
98oveq2d 5843 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( P  pCnt  -u ( x  / 
y ) )  =  ( P  pCnt  ( -u x  /  y ) ) )
10 neg0 8126 . . . . . . . . . 10  |-  -u 0  =  0
11 simpr 109 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  x  =  0 )
1211negeqd 8075 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  -u x  =  -u 0 )
1310, 12, 113eqtr4a 2216 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  -u x  =  x )
1413oveq1d 5842 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  ( -u x  /  y )  =  ( x  / 
y ) )
1514oveq2d 5843 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =  0 )  ->  ( P  pCnt  ( -u x  /  y ) )  =  ( P  pCnt  ( x  /  y ) ) )
16 simpll 519 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  P  e.  Prime )
17 simplrl 525 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  x  e.  ZZ )
1817znegcld 9294 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  -u x  e.  ZZ )
19 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  x  =/=  0 )
202negne0bd 8184 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  (
x  =/=  0  <->  -u x  =/=  0 ) )
2117, 20syl 14 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  (
x  =/=  0  <->  -u x  =/=  0 ) )
2219, 21mpbid 146 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  -u x  =/=  0 )
23 eqid 2157 . . . . . . . . . . . 12  |-  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  -u x } ,  RR ,  <  )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  -u x } ,  RR ,  <  )
2423pczpre 12188 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( -u x  e.  ZZ  /\  -u x  =/=  0 ) )  ->  ( P  pCnt  -u x )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  -u x } ,  RR ,  <  ) )
2516, 18, 22, 24syl12anc 1218 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  -u x )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  -u x } ,  RR ,  <  ) )
26 eqid 2157 . . . . . . . . . . . . 13  |-  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  x } ,  RR ,  <  )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  x } ,  RR ,  <  )
2726pczpre 12188 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  =  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  x } ,  RR ,  <  )
)
28 prmz 12004 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  ZZ )
29 zexpcl 10444 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ZZ  /\  y  e.  NN0 )  -> 
( P ^ y
)  e.  ZZ )
3028, 29sylan 281 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  y  e.  NN0 )  ->  ( P ^ y )  e.  ZZ )
31 simpl 108 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  x  =/=  0 )  ->  x  e.  ZZ )
32 dvdsnegb 11716 . . . . . . . . . . . . . . . 16  |-  ( ( ( P ^ y
)  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( P ^
y )  ||  x  <->  ( P ^ y ) 
||  -u x ) )
3330, 31, 32syl2an 287 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  y  e.  NN0 )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( ( P ^ y )  ||  x 
<->  ( P ^ y
)  ||  -u x ) )
3433an32s 558 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( P ^ y
)  ||  x  <->  ( P ^ y )  ||  -u x ) )
3534rabbidva 2700 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  { y  e. 
NN0  |  ( P ^ y )  ||  x }  =  {
y  e.  NN0  | 
( P ^ y
)  ||  -u x }
)
3635supeq1d 6934 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  sup ( { y  e.  NN0  |  ( P ^ y )  ||  x } ,  RR ,  <  )  =  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  -u x } ,  RR ,  <  )
)
3727, 36eqtrd 2190 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  =  sup ( { y  e.  NN0  |  ( P ^ y
)  ||  -u x } ,  RR ,  <  )
)
3816, 17, 19, 37syl12anc 1218 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  x )  =  sup ( { y  e.  NN0  |  ( P ^ y )  ||  -u x } ,  RR ,  <  ) )
3925, 38eqtr4d 2193 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  -u x )  =  ( P  pCnt  x
) )
4039oveq1d 5842 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  (
( P  pCnt  -u x
)  -  ( P 
pCnt  y ) )  =  ( ( P 
pCnt  x )  -  ( P  pCnt  y ) ) )
41 simplrr 526 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  y  e.  NN )
42 pcdiv 12193 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( -u x  e.  ZZ  /\  -u x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  (
-u x  /  y
) )  =  ( ( P  pCnt  -u x
)  -  ( P 
pCnt  y ) ) )
4316, 18, 22, 41, 42syl121anc 1225 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  ( -u x  /  y ) )  =  ( ( P 
pCnt  -u x )  -  ( P  pCnt  y ) ) )
44 pcdiv 12193 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
4516, 17, 19, 41, 44syl121anc 1225 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  ( x  / 
y ) )  =  ( ( P  pCnt  x )  -  ( P 
pCnt  y ) ) )
4640, 43, 453eqtr4d 2200 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  NN ) )  /\  x  =/=  0 )  ->  ( P  pCnt  ( -u x  /  y ) )  =  ( P  pCnt  ( x  /  y ) ) )
47 simprl 521 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  x  e.  ZZ )
48 0zd 9185 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  0  e.  ZZ )
49 zdceq 9245 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  0  e.  ZZ )  -> DECID  x  =  0 )
5047, 48, 49syl2anc 409 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  -> DECID  x  =  0
)
51 dcne 2338 . . . . . . . 8  |-  (DECID  x  =  0  <->  ( x  =  0  \/  x  =/=  0 ) )
5250, 51sylib 121 . . . . . . 7  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( x  =  0  \/  x  =/=  0 ) )
5315, 46, 52mpjaodan 788 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( P  pCnt  ( -u x  / 
y ) )  =  ( P  pCnt  (
x  /  y ) ) )
549, 53eqtrd 2190 . . . . 5  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( P  pCnt  -u ( x  / 
y ) )  =  ( P  pCnt  (
x  /  y ) ) )
55 negeq 8073 . . . . . . 7  |-  ( A  =  ( x  / 
y )  ->  -u A  =  -u ( x  / 
y ) )
5655oveq2d 5843 . . . . . 6  |-  ( A  =  ( x  / 
y )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  -u (
x  /  y ) ) )
57 oveq2 5835 . . . . . 6  |-  ( A  =  ( x  / 
y )  ->  ( P  pCnt  A )  =  ( P  pCnt  (
x  /  y ) ) )
5856, 57eqeq12d 2172 . . . . 5  |-  ( A  =  ( x  / 
y )  ->  (
( P  pCnt  -u A
)  =  ( P 
pCnt  A )  <->  ( P  pCnt  -u ( x  / 
y ) )  =  ( P  pCnt  (
x  /  y ) ) ) )
5954, 58syl5ibrcom 156 . . . 4  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( A  =  ( x  / 
y )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) ) )
6059rexlimdvva 2582 . . 3  |-  ( P  e.  Prime  ->  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) ) )
611, 60syl5bi 151 . 2  |-  ( P  e.  Prime  ->  ( A  e.  QQ  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) ) )
6261imp 123 1  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    = wceq 1335    e. wcel 2128    =/= wne 2327   E.wrex 2436   {crab 2439   class class class wbr 3967  (class class class)co 5827   supcsup 6929   CCcc 7733   RRcr 7734   0cc0 7735    < clt 7915    - cmin 8051   -ucneg 8052   # cap 8461    / cdiv 8550   NNcn 8839   NN0cn0 9096   ZZcz 9173   QQcq 9535   ^cexp 10428    || cdvds 11695   Primecprime 12000    pCnt cpc 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-1o 6366  df-2o 6367  df-er 6483  df-en 6689  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-dvds 11696  df-gcd 11843  df-prm 12001  df-pc 12176
This theorem is referenced by:  pcabs  12215
  Copyright terms: Public domain W3C validator