![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl112anc | Unicode version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.4 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl112anc.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl112anc |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylXanc.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | sylXanc.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | sylXanc.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | jca 306 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | syl112anc.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 1, 2, 5, 6 | syl3anc 1249 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: fvun1 5623 caseinl 7150 caseinr 7151 reapmul1 8614 recrecap 8728 rec11rap 8730 divdivdivap 8732 dmdcanap 8741 ddcanap 8745 rerecclap 8749 div2negap 8754 divap1d 8820 divmulapd 8831 apdivmuld 8832 divmulap2d 8843 divmulap3d 8844 divassapd 8845 div12apd 8846 div23apd 8847 divdirapd 8848 divsubdirapd 8849 div11apd 8850 ltmul12a 8879 ltdiv1 8887 ltrec 8902 lt2msq1 8904 lediv2 8910 lediv23 8912 recp1lt1 8918 qapne 9704 xadd4d 9951 xleaddadd 9953 modqge0 10403 modqlt 10404 modqid 10420 expgt1 10648 nnlesq 10714 expnbnd 10734 facubnd 10816 resqrexlemover 11154 mulcn2 11455 cvgratnnlemnexp 11667 cvgratnnlemmn 11668 eftlub 11833 eflegeo 11844 sin01bnd 11900 cos01bnd 11901 eirraplem 11920 bezoutlemnewy 12133 bezoutlemstep 12134 mulgcd 12153 mulgcddvds 12232 prmind2 12258 oddpwdclemxy 12307 oddpwdclemodd 12310 qnumgt0 12336 pcpremul 12431 fldivp1 12486 pcfaclem 12487 qexpz 12490 prmpwdvds 12493 pockthg 12495 4sqlem10 12525 4sqlem12 12540 4sqlem16 12544 4sqlem17 12545 ablsub4 13383 znrrg 14148 txdis 14445 txdis1cn 14446 xblm 14585 reeff1oleme 14907 tangtx 14973 cosordlem 14984 logdivlti 15016 apcxp2 15072 lgsdilem 15143 lgseisenlem1 15186 lgseisenlem2 15187 lgseisenlem3 15188 lgsquadlem1 15191 2sqlem3 15204 2sqlem8 15210 apdifflemr 15537 |
Copyright terms: Public domain | W3C validator |