Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl112anc | Unicode version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | |
sylXanc.2 | |
sylXanc.3 | |
sylXanc.4 | |
syl112anc.5 |
Ref | Expression |
---|---|
syl112anc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 | |
2 | sylXanc.2 | . 2 | |
3 | sylXanc.3 | . . 3 | |
4 | sylXanc.4 | . . 3 | |
5 | 3, 4 | jca 304 | . 2 |
6 | syl112anc.5 | . 2 | |
7 | 1, 2, 5, 6 | syl3anc 1233 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: fvun1 5562 caseinl 7068 caseinr 7069 reapmul1 8514 recrecap 8626 rec11rap 8628 divdivdivap 8630 dmdcanap 8639 ddcanap 8643 rerecclap 8647 div2negap 8652 divap1d 8718 divmulapd 8729 apdivmuld 8730 divmulap2d 8741 divmulap3d 8742 divassapd 8743 div12apd 8744 div23apd 8745 divdirapd 8746 divsubdirapd 8747 div11apd 8748 ltmul12a 8776 ltdiv1 8784 ltrec 8799 lt2msq1 8801 lediv2 8807 lediv23 8809 recp1lt1 8815 qapne 9598 xadd4d 9842 xleaddadd 9844 modqge0 10288 modqlt 10289 modqid 10305 expgt1 10514 nnlesq 10579 expnbnd 10599 facubnd 10679 resqrexlemover 10974 mulcn2 11275 cvgratnnlemnexp 11487 cvgratnnlemmn 11488 eftlub 11653 eflegeo 11664 sin01bnd 11720 cos01bnd 11721 eirraplem 11739 bezoutlemnewy 11951 bezoutlemstep 11952 mulgcd 11971 mulgcddvds 12048 prmind2 12074 oddpwdclemxy 12123 oddpwdclemodd 12126 qnumgt0 12152 pcpremul 12247 fldivp1 12300 pcfaclem 12301 qexpz 12304 prmpwdvds 12307 pockthg 12309 4sqlem10 12339 txdis 13071 txdis1cn 13072 xblm 13211 reeff1oleme 13487 tangtx 13553 cosordlem 13564 logdivlti 13596 apcxp2 13652 lgsdilem 13722 2sqlem3 13747 2sqlem8 13753 apdifflemr 14079 |
Copyright terms: Public domain | W3C validator |