| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl112anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| syl112anc.5 |
|
| Ref | Expression |
|---|---|
| syl112anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. 2
| |
| 3 | sylXanc.3 |
. . 3
| |
| 4 | sylXanc.4 |
. . 3
| |
| 5 | 3, 4 | jca 306 |
. 2
|
| 6 | syl112anc.5 |
. 2
| |
| 7 | 1, 2, 5, 6 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: fvun1 5668 caseinl 7219 caseinr 7220 reapmul1 8703 recrecap 8817 rec11rap 8819 divdivdivap 8821 dmdcanap 8830 ddcanap 8834 rerecclap 8838 div2negap 8843 divap1d 8909 divmulapd 8920 apdivmuld 8921 divmulap2d 8932 divmulap3d 8933 divassapd 8934 div12apd 8935 div23apd 8936 divdirapd 8937 divsubdirapd 8938 div11apd 8939 ltmul12a 8968 ltdiv1 8976 ltrec 8991 lt2msq1 8993 lediv2 8999 lediv23 9001 recp1lt1 9007 qapne 9795 xadd4d 10042 xleaddadd 10044 modqge0 10514 modqlt 10515 modqid 10531 expgt1 10759 nnlesq 10825 expnbnd 10845 facubnd 10927 pfxsuffeqwrdeq 11189 resqrexlemover 11436 mulcn2 11738 cvgratnnlemnexp 11950 cvgratnnlemmn 11951 eftlub 12116 eflegeo 12127 sin01bnd 12183 cos01bnd 12184 eirraplem 12203 bitsmod 12382 bezoutlemnewy 12432 bezoutlemstep 12433 mulgcd 12452 mulgcddvds 12531 prmind2 12557 oddpwdclemxy 12606 oddpwdclemodd 12609 qnumgt0 12635 pcpremul 12731 fldivp1 12786 pcfaclem 12787 qexpz 12790 prmpwdvds 12793 pockthg 12795 4sqlem10 12825 4sqlem12 12840 4sqlem16 12844 4sqlem17 12845 ablsub4 13764 znrrg 14537 txdis 14864 txdis1cn 14865 xblm 15004 reeff1oleme 15359 tangtx 15425 cosordlem 15436 logdivlti 15468 apcxp2 15526 mersenne 15584 lgsdilem 15619 lgseisenlem1 15662 lgseisenlem2 15663 lgseisenlem3 15664 lgsquadlem1 15669 lgsquadlem2 15670 2sqlem3 15709 2sqlem8 15715 apdifflemr 16188 |
| Copyright terms: Public domain | W3C validator |