| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl112anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| syl112anc.5 |
|
| Ref | Expression |
|---|---|
| syl112anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. 2
| |
| 3 | sylXanc.3 |
. . 3
| |
| 4 | sylXanc.4 |
. . 3
| |
| 5 | 3, 4 | jca 306 |
. 2
|
| 6 | syl112anc.5 |
. 2
| |
| 7 | 1, 2, 5, 6 | syl3anc 1271 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: fvun1 5699 caseinl 7254 caseinr 7255 reapmul1 8738 recrecap 8852 rec11rap 8854 divdivdivap 8856 dmdcanap 8865 ddcanap 8869 rerecclap 8873 div2negap 8878 divap1d 8944 divmulapd 8955 apdivmuld 8956 divmulap2d 8967 divmulap3d 8968 divassapd 8969 div12apd 8970 div23apd 8971 divdirapd 8972 divsubdirapd 8973 div11apd 8974 ltmul12a 9003 ltdiv1 9011 ltrec 9026 lt2msq1 9028 lediv2 9034 lediv23 9036 recp1lt1 9042 qapne 9830 xadd4d 10077 xleaddadd 10079 modqge0 10549 modqlt 10550 modqid 10566 expgt1 10794 nnlesq 10860 expnbnd 10880 facubnd 10962 pfxsuffeqwrdeq 11225 resqrexlemover 11516 mulcn2 11818 cvgratnnlemnexp 12030 cvgratnnlemmn 12031 eftlub 12196 eflegeo 12207 sin01bnd 12263 cos01bnd 12264 eirraplem 12283 bitsmod 12462 bezoutlemnewy 12512 bezoutlemstep 12513 mulgcd 12532 mulgcddvds 12611 prmind2 12637 oddpwdclemxy 12686 oddpwdclemodd 12689 qnumgt0 12715 pcpremul 12811 fldivp1 12866 pcfaclem 12867 qexpz 12870 prmpwdvds 12873 pockthg 12875 4sqlem10 12905 4sqlem12 12920 4sqlem16 12924 4sqlem17 12925 ablsub4 13845 znrrg 14618 txdis 14945 txdis1cn 14946 xblm 15085 reeff1oleme 15440 tangtx 15506 cosordlem 15517 logdivlti 15549 apcxp2 15607 mersenne 15665 lgsdilem 15700 lgseisenlem1 15743 lgseisenlem2 15744 lgseisenlem3 15745 lgsquadlem1 15750 lgsquadlem2 15751 2sqlem3 15790 2sqlem8 15796 apdifflemr 16374 |
| Copyright terms: Public domain | W3C validator |