Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl112anc | Unicode version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | |
sylXanc.2 | |
sylXanc.3 | |
sylXanc.4 | |
syl112anc.5 |
Ref | Expression |
---|---|
syl112anc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 | |
2 | sylXanc.2 | . 2 | |
3 | sylXanc.3 | . . 3 | |
4 | sylXanc.4 | . . 3 | |
5 | 3, 4 | jca 304 | . 2 |
6 | syl112anc.5 | . 2 | |
7 | 1, 2, 5, 6 | syl3anc 1233 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: fvun1 5560 caseinl 7064 caseinr 7065 reapmul1 8501 recrecap 8613 rec11rap 8615 divdivdivap 8617 dmdcanap 8626 ddcanap 8630 rerecclap 8634 div2negap 8639 divap1d 8705 divmulapd 8716 apdivmuld 8717 divmulap2d 8728 divmulap3d 8729 divassapd 8730 div12apd 8731 div23apd 8732 divdirapd 8733 divsubdirapd 8734 div11apd 8735 ltmul12a 8763 ltdiv1 8771 ltrec 8786 lt2msq1 8788 lediv2 8794 lediv23 8796 recp1lt1 8802 qapne 9585 xadd4d 9829 xleaddadd 9831 modqge0 10275 modqlt 10276 modqid 10292 expgt1 10501 nnlesq 10566 expnbnd 10586 facubnd 10666 resqrexlemover 10961 mulcn2 11262 cvgratnnlemnexp 11474 cvgratnnlemmn 11475 eftlub 11640 eflegeo 11651 sin01bnd 11707 cos01bnd 11708 eirraplem 11726 bezoutlemnewy 11938 bezoutlemstep 11939 mulgcd 11958 mulgcddvds 12035 prmind2 12061 oddpwdclemxy 12110 oddpwdclemodd 12113 qnumgt0 12139 pcpremul 12234 fldivp1 12287 pcfaclem 12288 qexpz 12291 prmpwdvds 12294 pockthg 12296 4sqlem10 12326 txdis 13030 txdis1cn 13031 xblm 13170 reeff1oleme 13446 tangtx 13512 cosordlem 13523 logdivlti 13555 apcxp2 13611 lgsdilem 13681 2sqlem3 13706 2sqlem8 13712 apdifflemr 14039 |
Copyright terms: Public domain | W3C validator |