Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl112anc | Unicode version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | |
sylXanc.2 | |
sylXanc.3 | |
sylXanc.4 | |
syl112anc.5 |
Ref | Expression |
---|---|
syl112anc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 | |
2 | sylXanc.2 | . 2 | |
3 | sylXanc.3 | . . 3 | |
4 | sylXanc.4 | . . 3 | |
5 | 3, 4 | jca 304 | . 2 |
6 | syl112anc.5 | . 2 | |
7 | 1, 2, 5, 6 | syl3anc 1228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: fvun1 5551 caseinl 7052 caseinr 7053 reapmul1 8489 recrecap 8601 rec11rap 8603 divdivdivap 8605 dmdcanap 8614 ddcanap 8618 rerecclap 8622 div2negap 8627 divap1d 8693 divmulapd 8704 apdivmuld 8705 divmulap2d 8716 divmulap3d 8717 divassapd 8718 div12apd 8719 div23apd 8720 divdirapd 8721 divsubdirapd 8722 div11apd 8723 ltmul12a 8751 ltdiv1 8759 ltrec 8774 lt2msq1 8776 lediv2 8782 lediv23 8784 recp1lt1 8790 qapne 9573 xadd4d 9817 xleaddadd 9819 modqge0 10263 modqlt 10264 modqid 10280 expgt1 10489 nnlesq 10554 expnbnd 10574 facubnd 10654 resqrexlemover 10948 mulcn2 11249 cvgratnnlemnexp 11461 cvgratnnlemmn 11462 eftlub 11627 eflegeo 11638 sin01bnd 11694 cos01bnd 11695 eirraplem 11713 bezoutlemnewy 11925 bezoutlemstep 11926 mulgcd 11945 mulgcddvds 12022 prmind2 12048 oddpwdclemxy 12097 oddpwdclemodd 12100 qnumgt0 12126 pcpremul 12221 fldivp1 12274 pcfaclem 12275 qexpz 12278 prmpwdvds 12281 pockthg 12283 4sqlem10 12313 txdis 12877 txdis1cn 12878 xblm 13017 reeff1oleme 13293 tangtx 13359 cosordlem 13370 logdivlti 13402 apcxp2 13458 lgsdilem 13528 2sqlem3 13553 2sqlem8 13559 apdifflemr 13886 |
Copyright terms: Public domain | W3C validator |