| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl112anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| syl112anc.5 |
|
| Ref | Expression |
|---|---|
| syl112anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. 2
| |
| 3 | sylXanc.3 |
. . 3
| |
| 4 | sylXanc.4 |
. . 3
| |
| 5 | 3, 4 | jca 306 |
. 2
|
| 6 | syl112anc.5 |
. 2
| |
| 7 | 1, 2, 5, 6 | syl3anc 1249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: fvun1 5644 caseinl 7192 caseinr 7193 reapmul1 8667 recrecap 8781 rec11rap 8783 divdivdivap 8785 dmdcanap 8794 ddcanap 8798 rerecclap 8802 div2negap 8807 divap1d 8873 divmulapd 8884 apdivmuld 8885 divmulap2d 8896 divmulap3d 8897 divassapd 8898 div12apd 8899 div23apd 8900 divdirapd 8901 divsubdirapd 8902 div11apd 8903 ltmul12a 8932 ltdiv1 8940 ltrec 8955 lt2msq1 8957 lediv2 8963 lediv23 8965 recp1lt1 8971 qapne 9759 xadd4d 10006 xleaddadd 10008 modqge0 10475 modqlt 10476 modqid 10492 expgt1 10720 nnlesq 10786 expnbnd 10806 facubnd 10888 resqrexlemover 11292 mulcn2 11594 cvgratnnlemnexp 11806 cvgratnnlemmn 11807 eftlub 11972 eflegeo 11983 sin01bnd 12039 cos01bnd 12040 eirraplem 12059 bitsmod 12238 bezoutlemnewy 12288 bezoutlemstep 12289 mulgcd 12308 mulgcddvds 12387 prmind2 12413 oddpwdclemxy 12462 oddpwdclemodd 12465 qnumgt0 12491 pcpremul 12587 fldivp1 12642 pcfaclem 12643 qexpz 12646 prmpwdvds 12649 pockthg 12651 4sqlem10 12681 4sqlem12 12696 4sqlem16 12700 4sqlem17 12701 ablsub4 13620 znrrg 14393 txdis 14720 txdis1cn 14721 xblm 14860 reeff1oleme 15215 tangtx 15281 cosordlem 15292 logdivlti 15324 apcxp2 15382 mersenne 15440 lgsdilem 15475 lgseisenlem1 15518 lgseisenlem2 15519 lgseisenlem3 15520 lgsquadlem1 15525 lgsquadlem2 15526 2sqlem3 15565 2sqlem8 15571 apdifflemr 15948 |
| Copyright terms: Public domain | W3C validator |