| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syl112anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) | 
| Ref | Expression | 
|---|---|
| sylXanc.1 | 
 | 
| sylXanc.2 | 
 | 
| sylXanc.3 | 
 | 
| sylXanc.4 | 
 | 
| syl112anc.5 | 
 | 
| Ref | Expression | 
|---|---|
| syl112anc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylXanc.1 | 
. 2
 | |
| 2 | sylXanc.2 | 
. 2
 | |
| 3 | sylXanc.3 | 
. . 3
 | |
| 4 | sylXanc.4 | 
. . 3
 | |
| 5 | 3, 4 | jca 306 | 
. 2
 | 
| 6 | syl112anc.5 | 
. 2
 | |
| 7 | 1, 2, 5, 6 | syl3anc 1249 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: fvun1 5627 caseinl 7157 caseinr 7158 reapmul1 8622 recrecap 8736 rec11rap 8738 divdivdivap 8740 dmdcanap 8749 ddcanap 8753 rerecclap 8757 div2negap 8762 divap1d 8828 divmulapd 8839 apdivmuld 8840 divmulap2d 8851 divmulap3d 8852 divassapd 8853 div12apd 8854 div23apd 8855 divdirapd 8856 divsubdirapd 8857 div11apd 8858 ltmul12a 8887 ltdiv1 8895 ltrec 8910 lt2msq1 8912 lediv2 8918 lediv23 8920 recp1lt1 8926 qapne 9713 xadd4d 9960 xleaddadd 9962 modqge0 10424 modqlt 10425 modqid 10441 expgt1 10669 nnlesq 10735 expnbnd 10755 facubnd 10837 resqrexlemover 11175 mulcn2 11477 cvgratnnlemnexp 11689 cvgratnnlemmn 11690 eftlub 11855 eflegeo 11866 sin01bnd 11922 cos01bnd 11923 eirraplem 11942 bezoutlemnewy 12163 bezoutlemstep 12164 mulgcd 12183 mulgcddvds 12262 prmind2 12288 oddpwdclemxy 12337 oddpwdclemodd 12340 qnumgt0 12366 pcpremul 12462 fldivp1 12517 pcfaclem 12518 qexpz 12521 prmpwdvds 12524 pockthg 12526 4sqlem10 12556 4sqlem12 12571 4sqlem16 12575 4sqlem17 12576 ablsub4 13443 znrrg 14216 txdis 14513 txdis1cn 14514 xblm 14653 reeff1oleme 15008 tangtx 15074 cosordlem 15085 logdivlti 15117 apcxp2 15175 mersenne 15233 lgsdilem 15268 lgseisenlem1 15311 lgseisenlem2 15312 lgseisenlem3 15313 lgsquadlem1 15318 lgsquadlem2 15319 2sqlem3 15358 2sqlem8 15364 apdifflemr 15691 | 
| Copyright terms: Public domain | W3C validator |