| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl112anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| syl112anc.5 |
|
| Ref | Expression |
|---|---|
| syl112anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. 2
| |
| 3 | sylXanc.3 |
. . 3
| |
| 4 | sylXanc.4 |
. . 3
| |
| 5 | 3, 4 | jca 306 |
. 2
|
| 6 | syl112anc.5 |
. 2
| |
| 7 | 1, 2, 5, 6 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: fvun1 5645 caseinl 7193 caseinr 7194 reapmul1 8668 recrecap 8782 rec11rap 8784 divdivdivap 8786 dmdcanap 8795 ddcanap 8799 rerecclap 8803 div2negap 8808 divap1d 8874 divmulapd 8885 apdivmuld 8886 divmulap2d 8897 divmulap3d 8898 divassapd 8899 div12apd 8900 div23apd 8901 divdirapd 8902 divsubdirapd 8903 div11apd 8904 ltmul12a 8933 ltdiv1 8941 ltrec 8956 lt2msq1 8958 lediv2 8964 lediv23 8966 recp1lt1 8972 qapne 9760 xadd4d 10007 xleaddadd 10009 modqge0 10477 modqlt 10478 modqid 10494 expgt1 10722 nnlesq 10788 expnbnd 10808 facubnd 10890 resqrexlemover 11321 mulcn2 11623 cvgratnnlemnexp 11835 cvgratnnlemmn 11836 eftlub 12001 eflegeo 12012 sin01bnd 12068 cos01bnd 12069 eirraplem 12088 bitsmod 12267 bezoutlemnewy 12317 bezoutlemstep 12318 mulgcd 12337 mulgcddvds 12416 prmind2 12442 oddpwdclemxy 12491 oddpwdclemodd 12494 qnumgt0 12520 pcpremul 12616 fldivp1 12671 pcfaclem 12672 qexpz 12675 prmpwdvds 12678 pockthg 12680 4sqlem10 12710 4sqlem12 12725 4sqlem16 12729 4sqlem17 12730 ablsub4 13649 znrrg 14422 txdis 14749 txdis1cn 14750 xblm 14889 reeff1oleme 15244 tangtx 15310 cosordlem 15321 logdivlti 15353 apcxp2 15411 mersenne 15469 lgsdilem 15504 lgseisenlem1 15547 lgseisenlem2 15548 lgseisenlem3 15549 lgsquadlem1 15554 lgsquadlem2 15555 2sqlem3 15594 2sqlem8 15600 apdifflemr 15986 |
| Copyright terms: Public domain | W3C validator |