| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl122anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| sylXanc.5 |
|
| syl122anc.6 |
|
| Ref | Expression |
|---|---|
| syl122anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. 2
| |
| 3 | sylXanc.3 |
. 2
| |
| 4 | sylXanc.4 |
. . 3
| |
| 5 | sylXanc.5 |
. . 3
| |
| 6 | 4, 5 | jca 306 |
. 2
|
| 7 | syl122anc.6 |
. 2
| |
| 8 | 1, 2, 3, 6, 7 | syl121anc 1255 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: divdiv32apd 8924 divcanap5d 8925 divcanap7d 8927 divdivap1d 8930 divdivap2d 8931 seq3coll 11024 cau3lem 11540 summodclem2a 11807 prodmodclem2a 12002 prmind2 12557 divnumden 12633 pceulem 12732 pcqmul 12741 pcqdiv 12745 pcexp 12747 pcaddlem 12777 pcbc 12789 abladdsub4 13765 ablpnpcan 13771 lmodvs1 14193 blss2ps 14993 blss2 14994 blssps 15014 blss 15015 xmeter 15023 lgsdi 15629 |
| Copyright terms: Public domain | W3C validator |