| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl122anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| sylXanc.5 |
|
| syl122anc.6 |
|
| Ref | Expression |
|---|---|
| syl122anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. 2
| |
| 3 | sylXanc.3 |
. 2
| |
| 4 | sylXanc.4 |
. . 3
| |
| 5 | sylXanc.5 |
. . 3
| |
| 6 | 4, 5 | jca 306 |
. 2
|
| 7 | syl122anc.6 |
. 2
| |
| 8 | 1, 2, 3, 6, 7 | syl121anc 1254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: divdiv32apd 8843 divcanap5d 8844 divcanap7d 8846 divdivap1d 8849 divdivap2d 8850 seq3coll 10934 cau3lem 11279 summodclem2a 11546 prodmodclem2a 11741 prmind2 12288 divnumden 12364 pceulem 12463 pcqmul 12472 pcqdiv 12476 pcexp 12478 pcaddlem 12508 pcbc 12520 abladdsub4 13444 ablpnpcan 13450 lmodvs1 13872 blss2ps 14642 blss2 14643 blssps 14663 blss 14664 xmeter 14672 lgsdi 15278 |
| Copyright terms: Public domain | W3C validator |