![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl122anc | Unicode version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.4 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.5 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl122anc.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl122anc |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylXanc.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | sylXanc.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | sylXanc.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | sylXanc.5 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | jca 302 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | syl122anc.6 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 1, 2, 3, 6, 7 | syl121anc 1204 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 947 |
This theorem is referenced by: divdiv32apd 8489 divcanap5d 8490 divcanap7d 8492 divdivap1d 8495 divdivap2d 8496 seq3coll 10478 cau3lem 10778 summodclem2a 11042 prmind2 11647 divnumden 11719 blss2ps 12395 blss2 12396 blssps 12416 blss 12417 xmeter 12425 |
Copyright terms: Public domain | W3C validator |