| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl122anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| sylXanc.5 |
|
| syl122anc.6 |
|
| Ref | Expression |
|---|---|
| syl122anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. 2
| |
| 3 | sylXanc.3 |
. 2
| |
| 4 | sylXanc.4 |
. . 3
| |
| 5 | sylXanc.5 |
. . 3
| |
| 6 | 4, 5 | jca 306 |
. 2
|
| 7 | syl122anc.6 |
. 2
| |
| 8 | 1, 2, 3, 6, 7 | syl121anc 1276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: divdiv32apd 8959 divcanap5d 8960 divcanap7d 8962 divdivap1d 8965 divdivap2d 8966 seq3coll 11059 cau3lem 11620 summodclem2a 11887 prodmodclem2a 12082 prmind2 12637 divnumden 12713 pceulem 12812 pcqmul 12821 pcqdiv 12825 pcexp 12827 pcaddlem 12857 pcbc 12869 abladdsub4 13846 ablpnpcan 13852 lmodvs1 14274 blss2ps 15074 blss2 15075 blssps 15095 blss 15096 xmeter 15104 lgsdi 15710 |
| Copyright terms: Public domain | W3C validator |