ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl122anc Unicode version

Theorem syl122anc 1208
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
sylXanc.5  |-  ( ph  ->  et )
syl122anc.6  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ( ta  /\  et ) )  ->  ze )
Assertion
Ref Expression
syl122anc  |-  ( ph  ->  ze )

Proof of Theorem syl122anc
StepHypRef Expression
1 sylXanc.1 . 2  |-  ( ph  ->  ps )
2 sylXanc.2 . 2  |-  ( ph  ->  ch )
3 sylXanc.3 . 2  |-  ( ph  ->  th )
4 sylXanc.4 . . 3  |-  ( ph  ->  ta )
5 sylXanc.5 . . 3  |-  ( ph  ->  et )
64, 5jca 302 . 2  |-  ( ph  ->  ( ta  /\  et ) )
7 syl122anc.6 . 2  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ( ta  /\  et ) )  ->  ze )
81, 2, 3, 6, 7syl121anc 1204 1  |-  ( ph  ->  ze )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 947
This theorem is referenced by:  divdiv32apd  8489  divcanap5d  8490  divcanap7d  8492  divdivap1d  8495  divdivap2d  8496  seq3coll  10478  cau3lem  10778  summodclem2a  11042  prmind2  11647  divnumden  11719  blss2ps  12395  blss2  12396  blssps  12416  blss  12417  xmeter  12425
  Copyright terms: Public domain W3C validator