| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl122anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| sylXanc.5 |
|
| syl122anc.6 |
|
| Ref | Expression |
|---|---|
| syl122anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. 2
| |
| 3 | sylXanc.3 |
. 2
| |
| 4 | sylXanc.4 |
. . 3
| |
| 5 | sylXanc.5 |
. . 3
| |
| 6 | 4, 5 | jca 306 |
. 2
|
| 7 | syl122anc.6 |
. 2
| |
| 8 | 1, 2, 3, 6, 7 | syl121anc 1254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: divdiv32apd 8888 divcanap5d 8889 divcanap7d 8891 divdivap1d 8894 divdivap2d 8895 seq3coll 10985 cau3lem 11396 summodclem2a 11663 prodmodclem2a 11858 prmind2 12413 divnumden 12489 pceulem 12588 pcqmul 12597 pcqdiv 12601 pcexp 12603 pcaddlem 12633 pcbc 12645 abladdsub4 13621 ablpnpcan 13627 lmodvs1 14049 blss2ps 14849 blss2 14850 blssps 14870 blss 14871 xmeter 14879 lgsdi 15485 |
| Copyright terms: Public domain | W3C validator |