| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl122anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| sylXanc.5 |
|
| syl122anc.6 |
|
| Ref | Expression |
|---|---|
| syl122anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. 2
| |
| 3 | sylXanc.3 |
. 2
| |
| 4 | sylXanc.4 |
. . 3
| |
| 5 | sylXanc.5 |
. . 3
| |
| 6 | 4, 5 | jca 306 |
. 2
|
| 7 | syl122anc.6 |
. 2
| |
| 8 | 1, 2, 3, 6, 7 | syl121anc 1254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: divdiv32apd 8860 divcanap5d 8861 divcanap7d 8863 divdivap1d 8866 divdivap2d 8867 seq3coll 10951 cau3lem 11296 summodclem2a 11563 prodmodclem2a 11758 prmind2 12313 divnumden 12389 pceulem 12488 pcqmul 12497 pcqdiv 12501 pcexp 12503 pcaddlem 12533 pcbc 12545 abladdsub4 13520 ablpnpcan 13526 lmodvs1 13948 blss2ps 14726 blss2 14727 blssps 14747 blss 14748 xmeter 14756 lgsdi 15362 |
| Copyright terms: Public domain | W3C validator |