| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl122anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| sylXanc.5 |
|
| syl122anc.6 |
|
| Ref | Expression |
|---|---|
| syl122anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. 2
| |
| 3 | sylXanc.3 |
. 2
| |
| 4 | sylXanc.4 |
. . 3
| |
| 5 | sylXanc.5 |
. . 3
| |
| 6 | 4, 5 | jca 306 |
. 2
|
| 7 | syl122anc.6 |
. 2
| |
| 8 | 1, 2, 3, 6, 7 | syl121anc 1255 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: divdiv32apd 8889 divcanap5d 8890 divcanap7d 8892 divdivap1d 8895 divdivap2d 8896 seq3coll 10987 cau3lem 11425 summodclem2a 11692 prodmodclem2a 11887 prmind2 12442 divnumden 12518 pceulem 12617 pcqmul 12626 pcqdiv 12630 pcexp 12632 pcaddlem 12662 pcbc 12674 abladdsub4 13650 ablpnpcan 13656 lmodvs1 14078 blss2ps 14878 blss2 14879 blssps 14899 blss 14900 xmeter 14908 lgsdi 15514 |
| Copyright terms: Public domain | W3C validator |