ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl122anc Unicode version

Theorem syl122anc 1259
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
sylXanc.5  |-  ( ph  ->  et )
syl122anc.6  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ( ta  /\  et ) )  ->  ze )
Assertion
Ref Expression
syl122anc  |-  ( ph  ->  ze )

Proof of Theorem syl122anc
StepHypRef Expression
1 sylXanc.1 . 2  |-  ( ph  ->  ps )
2 sylXanc.2 . 2  |-  ( ph  ->  ch )
3 sylXanc.3 . 2  |-  ( ph  ->  th )
4 sylXanc.4 . . 3  |-  ( ph  ->  ta )
5 sylXanc.5 . . 3  |-  ( ph  ->  et )
64, 5jca 306 . 2  |-  ( ph  ->  ( ta  /\  et ) )
7 syl122anc.6 . 2  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ( ta  /\  et ) )  ->  ze )
81, 2, 3, 6, 7syl121anc 1255 1  |-  ( ph  ->  ze )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  divdiv32apd  8889  divcanap5d  8890  divcanap7d  8892  divdivap1d  8895  divdivap2d  8896  seq3coll  10987  cau3lem  11425  summodclem2a  11692  prodmodclem2a  11887  prmind2  12442  divnumden  12518  pceulem  12617  pcqmul  12626  pcqdiv  12630  pcexp  12632  pcaddlem  12662  pcbc  12674  abladdsub4  13650  ablpnpcan  13656  lmodvs1  14078  blss2ps  14878  blss2  14879  blssps  14899  blss  14900  xmeter  14908  lgsdi  15514
  Copyright terms: Public domain W3C validator