ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl122anc Unicode version

Theorem syl122anc 1259
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
sylXanc.5  |-  ( ph  ->  et )
syl122anc.6  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ( ta  /\  et ) )  ->  ze )
Assertion
Ref Expression
syl122anc  |-  ( ph  ->  ze )

Proof of Theorem syl122anc
StepHypRef Expression
1 sylXanc.1 . 2  |-  ( ph  ->  ps )
2 sylXanc.2 . 2  |-  ( ph  ->  ch )
3 sylXanc.3 . 2  |-  ( ph  ->  th )
4 sylXanc.4 . . 3  |-  ( ph  ->  ta )
5 sylXanc.5 . . 3  |-  ( ph  ->  et )
64, 5jca 306 . 2  |-  ( ph  ->  ( ta  /\  et ) )
7 syl122anc.6 . 2  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ( ta  /\  et ) )  ->  ze )
81, 2, 3, 6, 7syl121anc 1255 1  |-  ( ph  ->  ze )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  divdiv32apd  8924  divcanap5d  8925  divcanap7d  8927  divdivap1d  8930  divdivap2d  8931  seq3coll  11024  cau3lem  11540  summodclem2a  11807  prodmodclem2a  12002  prmind2  12557  divnumden  12633  pceulem  12732  pcqmul  12741  pcqdiv  12745  pcexp  12747  pcaddlem  12777  pcbc  12789  abladdsub4  13765  ablpnpcan  13771  lmodvs1  14193  blss2ps  14993  blss2  14994  blssps  15014  blss  15015  xmeter  15023  lgsdi  15629
  Copyright terms: Public domain W3C validator