ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl122anc Unicode version

Theorem syl122anc 1258
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
sylXanc.5  |-  ( ph  ->  et )
syl122anc.6  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ( ta  /\  et ) )  ->  ze )
Assertion
Ref Expression
syl122anc  |-  ( ph  ->  ze )

Proof of Theorem syl122anc
StepHypRef Expression
1 sylXanc.1 . 2  |-  ( ph  ->  ps )
2 sylXanc.2 . 2  |-  ( ph  ->  ch )
3 sylXanc.3 . 2  |-  ( ph  ->  th )
4 sylXanc.4 . . 3  |-  ( ph  ->  ta )
5 sylXanc.5 . . 3  |-  ( ph  ->  et )
64, 5jca 306 . 2  |-  ( ph  ->  ( ta  /\  et ) )
7 syl122anc.6 . 2  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ( ta  /\  et ) )  ->  ze )
81, 2, 3, 6, 7syl121anc 1254 1  |-  ( ph  ->  ze )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  divdiv32apd  8888  divcanap5d  8889  divcanap7d  8891  divdivap1d  8894  divdivap2d  8895  seq3coll  10985  cau3lem  11396  summodclem2a  11663  prodmodclem2a  11858  prmind2  12413  divnumden  12489  pceulem  12588  pcqmul  12597  pcqdiv  12601  pcexp  12603  pcaddlem  12633  pcbc  12645  abladdsub4  13621  ablpnpcan  13627  lmodvs1  14049  blss2ps  14849  blss2  14850  blssps  14870  blss  14871  xmeter  14879  lgsdi  15485
  Copyright terms: Public domain W3C validator