ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qexpz Unicode version

Theorem qexpz 12490
Description: If a power of a rational number is an integer, then the number is an integer. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
qexpz  |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  ->  A  e.  ZZ )

Proof of Theorem qexpz
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 0z 9328 . . . 4  |-  0  e.  ZZ
2 eleq1 2256 . . . 4  |-  ( A  =  0  ->  ( A  e.  ZZ  <->  0  e.  ZZ ) )
31, 2mpbiri 168 . . 3  |-  ( A  =  0  ->  A  e.  ZZ )
43adantl 277 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =  0 )  ->  A  e.  ZZ )
5 simpll2 1039 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  N  e.  NN )
65nncnd 8996 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  N  e.  CC )
76mul01d 8412 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( N  x.  0 )  =  0 )
8 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  p  e.  Prime )
9 simpll3 1040 . . . . . . . . 9  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( A ^ N )  e.  ZZ )
10 simpll1 1038 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  A  e.  QQ )
11 qcn 9699 . . . . . . . . . . . 12  |-  ( A  e.  QQ  ->  A  e.  CC )
1210, 11syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  A  e.  CC )
13 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  A  =/=  0 )
14 zq 9691 . . . . . . . . . . . . . 14  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
151, 14ax-mp 5 . . . . . . . . . . . . 13  |-  0  e.  QQ
16 qapne 9704 . . . . . . . . . . . . 13  |-  ( ( A  e.  QQ  /\  0  e.  QQ )  ->  ( A #  0  <->  A  =/=  0 ) )
1710, 15, 16sylancl 413 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( A #  0  <->  A  =/=  0
) )
1813, 17mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  A #  0 )
195nnzd 9438 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  N  e.  ZZ )
2012, 18, 19expap0d 10750 . . . . . . . . . 10  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( A ^ N ) #  0 )
21 0zd 9329 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  e.  ZZ )
22 zapne 9391 . . . . . . . . . . 11  |-  ( ( ( A ^ N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( A ^ N ) #  0  <->  ( A ^ N )  =/=  0
) )
239, 21, 22syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
( A ^ N
) #  0  <->  ( A ^ N )  =/=  0
) )
2420, 23mpbid 147 . . . . . . . . 9  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( A ^ N )  =/=  0 )
25 pczcl 12436 . . . . . . . . 9  |-  ( ( p  e.  Prime  /\  (
( A ^ N
)  e.  ZZ  /\  ( A ^ N )  =/=  0 ) )  ->  ( p  pCnt  ( A ^ N ) )  e.  NN0 )
268, 9, 24, 25syl12anc 1247 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  ( A ^ N ) )  e. 
NN0 )
2726nn0ge0d 9296 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  <_  ( p  pCnt  ( A ^ N ) ) )
28 pcexp 12447 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  (
p  pCnt  ( A ^ N ) )  =  ( N  x.  (
p  pCnt  A )
) )
298, 10, 13, 19, 28syl121anc 1254 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  ( A ^ N ) )  =  ( N  x.  (
p  pCnt  A )
) )
3027, 29breqtrd 4055 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  <_  ( N  x.  (
p  pCnt  A )
) )
317, 30eqbrtrd 4051 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( N  x.  0 )  <_  ( N  x.  ( p  pCnt  A ) ) )
32 0red 8020 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  e.  RR )
33 pcqcl 12444 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( p  pCnt  A
)  e.  ZZ )
348, 10, 13, 33syl12anc 1247 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  A )  e.  ZZ )
3534zred 9439 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  A )  e.  RR )
365nnred 8995 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  N  e.  RR )
375nngt0d 9026 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  <  N )
38 lemul2 8876 . . . . . 6  |-  ( ( 0  e.  RR  /\  ( p  pCnt  A )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( 0  <_  (
p  pCnt  A )  <->  ( N  x.  0 )  <_  ( N  x.  ( p  pCnt  A ) ) ) )
3932, 35, 36, 37, 38syl112anc 1253 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( p  pCnt  A )  <->  ( N  x.  0 )  <_  ( N  x.  ( p  pCnt  A ) ) ) )
4031, 39mpbird 167 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  <_  ( p  pCnt  A
) )
4140ralrimiva 2567 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  ->  A. p  e.  Prime  0  <_  ( p  pCnt  A ) )
42 simpl1 1002 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  ->  A  e.  QQ )
43 pcz 12470 . . . 4  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
) )
4442, 43syl 14 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  -> 
( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  A
) ) )
4541, 44mpbird 167 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  ->  A  e.  ZZ )
46 simp1 999 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  ->  A  e.  QQ )
47 qdceq 10314 . . . 4  |-  ( ( A  e.  QQ  /\  0  e.  QQ )  -> DECID  A  =  0 )
4846, 15, 47sylancl 413 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  -> DECID  A  =  0
)
49 dcne 2375 . . 3  |-  (DECID  A  =  0  <->  ( A  =  0  \/  A  =/=  0 ) )
5048, 49sylib 122 . 2  |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  ->  ( A  =  0  \/  A  =/=  0 ) )
514, 45, 50mpjaodan 799 1  |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  ->  A  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472   class class class wbr 4029  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872    x. cmul 7877    < clt 8054    <_ cle 8055   # cap 8600   NNcn 8982   NN0cn0 9240   ZZcz 9317   QQcq 9684   ^cexp 10609   Primecprime 12245    pCnt cpc 12422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-xnn0 9304  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246  df-pc 12423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator