ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qexpz Unicode version

Theorem qexpz 12379
Description: If a power of a rational number is an integer, then the number is an integer. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
qexpz  |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  ->  A  e.  ZZ )

Proof of Theorem qexpz
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 0z 9289 . . . 4  |-  0  e.  ZZ
2 eleq1 2252 . . . 4  |-  ( A  =  0  ->  ( A  e.  ZZ  <->  0  e.  ZZ ) )
31, 2mpbiri 168 . . 3  |-  ( A  =  0  ->  A  e.  ZZ )
43adantl 277 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =  0 )  ->  A  e.  ZZ )
5 simpll2 1039 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  N  e.  NN )
65nncnd 8958 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  N  e.  CC )
76mul01d 8375 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( N  x.  0 )  =  0 )
8 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  p  e.  Prime )
9 simpll3 1040 . . . . . . . . 9  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( A ^ N )  e.  ZZ )
10 simpll1 1038 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  A  e.  QQ )
11 qcn 9659 . . . . . . . . . . . 12  |-  ( A  e.  QQ  ->  A  e.  CC )
1210, 11syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  A  e.  CC )
13 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  A  =/=  0 )
14 zq 9651 . . . . . . . . . . . . . 14  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
151, 14ax-mp 5 . . . . . . . . . . . . 13  |-  0  e.  QQ
16 qapne 9664 . . . . . . . . . . . . 13  |-  ( ( A  e.  QQ  /\  0  e.  QQ )  ->  ( A #  0  <->  A  =/=  0 ) )
1710, 15, 16sylancl 413 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( A #  0  <->  A  =/=  0
) )
1813, 17mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  A #  0 )
195nnzd 9399 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  N  e.  ZZ )
2012, 18, 19expap0d 10686 . . . . . . . . . 10  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( A ^ N ) #  0 )
21 0zd 9290 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  e.  ZZ )
22 zapne 9352 . . . . . . . . . . 11  |-  ( ( ( A ^ N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( A ^ N ) #  0  <->  ( A ^ N )  =/=  0
) )
239, 21, 22syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
( A ^ N
) #  0  <->  ( A ^ N )  =/=  0
) )
2420, 23mpbid 147 . . . . . . . . 9  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( A ^ N )  =/=  0 )
25 pczcl 12325 . . . . . . . . 9  |-  ( ( p  e.  Prime  /\  (
( A ^ N
)  e.  ZZ  /\  ( A ^ N )  =/=  0 ) )  ->  ( p  pCnt  ( A ^ N ) )  e.  NN0 )
268, 9, 24, 25syl12anc 1247 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  ( A ^ N ) )  e. 
NN0 )
2726nn0ge0d 9257 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  <_  ( p  pCnt  ( A ^ N ) ) )
28 pcexp 12336 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  (
p  pCnt  ( A ^ N ) )  =  ( N  x.  (
p  pCnt  A )
) )
298, 10, 13, 19, 28syl121anc 1254 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  ( A ^ N ) )  =  ( N  x.  (
p  pCnt  A )
) )
3027, 29breqtrd 4044 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  <_  ( N  x.  (
p  pCnt  A )
) )
317, 30eqbrtrd 4040 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( N  x.  0 )  <_  ( N  x.  ( p  pCnt  A ) ) )
32 0red 7983 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  e.  RR )
33 pcqcl 12333 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( p  pCnt  A
)  e.  ZZ )
348, 10, 13, 33syl12anc 1247 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  A )  e.  ZZ )
3534zred 9400 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  A )  e.  RR )
365nnred 8957 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  N  e.  RR )
375nngt0d 8988 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  <  N )
38 lemul2 8839 . . . . . 6  |-  ( ( 0  e.  RR  /\  ( p  pCnt  A )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( 0  <_  (
p  pCnt  A )  <->  ( N  x.  0 )  <_  ( N  x.  ( p  pCnt  A ) ) ) )
3932, 35, 36, 37, 38syl112anc 1253 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( p  pCnt  A )  <->  ( N  x.  0 )  <_  ( N  x.  ( p  pCnt  A ) ) ) )
4031, 39mpbird 167 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  <_  ( p  pCnt  A
) )
4140ralrimiva 2563 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  ->  A. p  e.  Prime  0  <_  ( p  pCnt  A ) )
42 simpl1 1002 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  ->  A  e.  QQ )
43 pcz 12359 . . . 4  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
) )
4442, 43syl 14 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  -> 
( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  A
) ) )
4541, 44mpbird 167 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  ->  A  e.  ZZ )
46 simp1 999 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  ->  A  e.  QQ )
47 qdceq 10272 . . . 4  |-  ( ( A  e.  QQ  /\  0  e.  QQ )  -> DECID  A  =  0 )
4846, 15, 47sylancl 413 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  -> DECID  A  =  0
)
49 dcne 2371 . . 3  |-  (DECID  A  =  0  <->  ( A  =  0  \/  A  =/=  0 ) )
5048, 49sylib 122 . 2  |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  ->  ( A  =  0  \/  A  =/=  0 ) )
514, 45, 50mpjaodan 799 1  |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  ->  A  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2160    =/= wne 2360   A.wral 2468   class class class wbr 4018  (class class class)co 5892   CCcc 7834   RRcr 7835   0cc0 7836    x. cmul 7841    < clt 8017    <_ cle 8018   # cap 8563   NNcn 8944   NN0cn0 9201   ZZcz 9278   QQcq 9644   ^cexp 10545   Primecprime 12134    pCnt cpc 12311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-mulrcl 7935  ax-addcom 7936  ax-mulcom 7937  ax-addass 7938  ax-mulass 7939  ax-distr 7940  ax-i2m1 7941  ax-0lt1 7942  ax-1rid 7943  ax-0id 7944  ax-rnegex 7945  ax-precex 7946  ax-cnre 7947  ax-pre-ltirr 7948  ax-pre-ltwlin 7949  ax-pre-lttrn 7950  ax-pre-apti 7951  ax-pre-ltadd 7952  ax-pre-mulgt0 7953  ax-pre-mulext 7954  ax-arch 7955  ax-caucvg 7956
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-isom 5241  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-recs 6325  df-frec 6411  df-1o 6436  df-2o 6437  df-er 6554  df-en 6762  df-sup 7008  df-inf 7009  df-pnf 8019  df-mnf 8020  df-xr 8021  df-ltxr 8022  df-le 8023  df-sub 8155  df-neg 8156  df-reap 8557  df-ap 8564  df-div 8655  df-inn 8945  df-2 9003  df-3 9004  df-4 9005  df-n0 9202  df-xnn0 9265  df-z 9279  df-uz 9554  df-q 9645  df-rp 9679  df-fz 10034  df-fzo 10168  df-fl 10296  df-mod 10349  df-seqfrec 10472  df-exp 10546  df-cj 10878  df-re 10879  df-im 10880  df-rsqrt 11034  df-abs 11035  df-dvds 11822  df-gcd 11971  df-prm 12135  df-pc 12312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator