ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi6 Unicode version

Theorem sbthlemi6 6939
Description: Lemma for isbth 6944. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlemi6  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  B )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlemi6
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpll 524 . . 3  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> EXMID )
2 simprll 532 . . 3  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  g  =  B
)
3 simprlr 533 . . 3  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  g  C_  A )
4 simprr 527 . . 3  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' g )
5 rnun 5019 . . . . 5  |-  ran  (
( f  |`  U. D
)  u.  ( `' g  |`  ( A  \ 
U. D ) ) )  =  ( ran  ( f  |`  U. D
)  u.  ran  ( `' g  |`  ( A 
\  U. D ) ) )
6 sbthlem.3 . . . . . 6  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
76rneqi 4839 . . . . 5  |-  ran  H  =  ran  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D
) ) )
8 df-ima 4624 . . . . . 6  |-  ( f
" U. D )  =  ran  ( f  |`  U. D )
98uneq1i 3277 . . . . 5  |-  ( ( f " U. D
)  u.  ran  ( `' g  |`  ( A 
\  U. D ) ) )  =  ( ran  ( f  |`  U. D
)  u.  ran  ( `' g  |`  ( A 
\  U. D ) ) )
105, 7, 93eqtr4i 2201 . . . 4  |-  ran  H  =  ( ( f
" U. D )  u.  ran  ( `' g  |`  ( A  \ 
U. D ) ) )
11 sbthlem.1 . . . . . . 7  |-  A  e. 
_V
12 sbthlem.2 . . . . . . 7  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
1311, 12sbthlemi4 6937 . . . . . 6  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
14 df-ima 4624 . . . . . 6  |-  ( `' g " ( A 
\  U. D ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) )
1513, 14eqtr3di 2218 . . . . 5  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( B  \  ( f " U. D ) )  =  ran  ( `' g  |`  ( A  \  U. D ) ) )
1615uneq2d 3281 . . . 4  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  (
( f " U. D )  u.  ( B  \  ( f " U. D ) ) )  =  ( ( f
" U. D )  u.  ran  ( `' g  |`  ( A  \ 
U. D ) ) ) )
1710, 16eqtr4id 2222 . . 3  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ran  H  =  ( ( f
" U. D )  u.  ( B  \ 
( f " U. D ) ) ) )
181, 2, 3, 4, 17syl121anc 1238 . 2  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  ( ( f " U. D
)  u.  ( B 
\  ( f " U. D ) ) ) )
19 imassrn 4964 . . . . . . 7  |-  ( f
" U. D ) 
C_  ran  f
20 sstr2 3154 . . . . . . 7  |-  ( ( f " U. D
)  C_  ran  f  -> 
( ran  f  C_  B  ->  ( f " U. D )  C_  B
) )
2119, 20ax-mp 5 . . . . . 6  |-  ( ran  f  C_  B  ->  ( f " U. D
)  C_  B )
2221adantl 275 . . . . 5  |-  ( (EXMID  /\ 
ran  f  C_  B
)  ->  ( f " U. D )  C_  B )
23 undifdcss 6900 . . . . . . 7  |-  ( B  =  ( ( f
" U. D )  u.  ( B  \ 
( f " U. D ) ) )  <-> 
( ( f " U. D )  C_  B  /\  A. y  e.  B DECID  y  e.  ( f " U. D ) ) )
24 exmidexmid 4182 . . . . . . . . 9  |-  (EXMID  -> DECID  y  e.  (
f " U. D
) )
2524ralrimivw 2544 . . . . . . . 8  |-  (EXMID  ->  A. y  e.  B DECID  y  e.  (
f " U. D
) )
2625biantrud 302 . . . . . . 7  |-  (EXMID  ->  (
( f " U. D )  C_  B  <->  ( ( f " U. D )  C_  B  /\  A. y  e.  B DECID  y  e.  ( f " U. D ) ) ) )
2723, 26bitr4id 198 . . . . . 6  |-  (EXMID  ->  ( B  =  ( (
f " U. D
)  u.  ( B 
\  ( f " U. D ) ) )  <-> 
( f " U. D )  C_  B
) )
2827adantr 274 . . . . 5  |-  ( (EXMID  /\ 
ran  f  C_  B
)  ->  ( B  =  ( ( f
" U. D )  u.  ( B  \ 
( f " U. D ) ) )  <-> 
( f " U. D )  C_  B
) )
2922, 28mpbird 166 . . . 4  |-  ( (EXMID  /\ 
ran  f  C_  B
)  ->  B  =  ( ( f " U. D )  u.  ( B  \  ( f " U. D ) ) ) )
3029eqcomd 2176 . . 3  |-  ( (EXMID  /\ 
ran  f  C_  B
)  ->  ( (
f " U. D
)  u.  ( B 
\  ( f " U. D ) ) )  =  B )
3130adantr 274 . 2  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> 
( ( f " U. D )  u.  ( B  \  ( f " U. D ) ) )  =  B )
3218, 31eqtrd 2203 1  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   _Vcvv 2730    \ cdif 3118    u. cun 3119    C_ wss 3121   U.cuni 3796  EXMIDwem 4180   `'ccnv 4610   dom cdm 4611   ran crn 4612    |` cres 4613   "cima 4614   Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-exmid 4181  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-fun 5200
This theorem is referenced by:  sbthlemi9  6942
  Copyright terms: Public domain W3C validator