| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbthlemi6 | Unicode version | ||
| Description: Lemma for isbth 7069. (Contributed by NM, 27-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 |
|
| sbthlem.2 |
|
| sbthlem.3 |
|
| Ref | Expression |
|---|---|
| sbthlemi6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . 3
| |
| 2 | simprll 537 |
. . 3
| |
| 3 | simprlr 538 |
. . 3
| |
| 4 | simprr 531 |
. . 3
| |
| 5 | rnun 5091 |
. . . . 5
| |
| 6 | sbthlem.3 |
. . . . . 6
| |
| 7 | 6 | rneqi 4906 |
. . . . 5
|
| 8 | df-ima 4688 |
. . . . . 6
| |
| 9 | 8 | uneq1i 3323 |
. . . . 5
|
| 10 | 5, 7, 9 | 3eqtr4i 2236 |
. . . 4
|
| 11 | sbthlem.1 |
. . . . . . 7
| |
| 12 | sbthlem.2 |
. . . . . . 7
| |
| 13 | 11, 12 | sbthlemi4 7062 |
. . . . . 6
|
| 14 | df-ima 4688 |
. . . . . 6
| |
| 15 | 13, 14 | eqtr3di 2253 |
. . . . 5
|
| 16 | 15 | uneq2d 3327 |
. . . 4
|
| 17 | 10, 16 | eqtr4id 2257 |
. . 3
|
| 18 | 1, 2, 3, 4, 17 | syl121anc 1255 |
. 2
|
| 19 | imassrn 5033 |
. . . . . . 7
| |
| 20 | sstr2 3200 |
. . . . . . 7
| |
| 21 | 19, 20 | ax-mp 5 |
. . . . . 6
|
| 22 | 21 | adantl 277 |
. . . . 5
|
| 23 | undifdcss 7020 |
. . . . . . 7
| |
| 24 | exmidexmid 4240 |
. . . . . . . . 9
| |
| 25 | 24 | ralrimivw 2580 |
. . . . . . . 8
|
| 26 | 25 | biantrud 304 |
. . . . . . 7
|
| 27 | 23, 26 | bitr4id 199 |
. . . . . 6
|
| 28 | 27 | adantr 276 |
. . . . 5
|
| 29 | 22, 28 | mpbird 167 |
. . . 4
|
| 30 | 29 | eqcomd 2211 |
. . 3
|
| 31 | 30 | adantr 276 |
. 2
|
| 32 | 18, 31 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-exmid 4239 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-fun 5273 |
| This theorem is referenced by: sbthlemi9 7067 |
| Copyright terms: Public domain | W3C validator |