| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbthlemi6 | Unicode version | ||
| Description: Lemma for isbth 7134. (Contributed by NM, 27-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 |
|
| sbthlem.2 |
|
| sbthlem.3 |
|
| Ref | Expression |
|---|---|
| sbthlemi6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . 3
| |
| 2 | simprll 537 |
. . 3
| |
| 3 | simprlr 538 |
. . 3
| |
| 4 | simprr 531 |
. . 3
| |
| 5 | rnun 5137 |
. . . . 5
| |
| 6 | sbthlem.3 |
. . . . . 6
| |
| 7 | 6 | rneqi 4952 |
. . . . 5
|
| 8 | df-ima 4732 |
. . . . . 6
| |
| 9 | 8 | uneq1i 3354 |
. . . . 5
|
| 10 | 5, 7, 9 | 3eqtr4i 2260 |
. . . 4
|
| 11 | sbthlem.1 |
. . . . . . 7
| |
| 12 | sbthlem.2 |
. . . . . . 7
| |
| 13 | 11, 12 | sbthlemi4 7127 |
. . . . . 6
|
| 14 | df-ima 4732 |
. . . . . 6
| |
| 15 | 13, 14 | eqtr3di 2277 |
. . . . 5
|
| 16 | 15 | uneq2d 3358 |
. . . 4
|
| 17 | 10, 16 | eqtr4id 2281 |
. . 3
|
| 18 | 1, 2, 3, 4, 17 | syl121anc 1276 |
. 2
|
| 19 | imassrn 5079 |
. . . . . . 7
| |
| 20 | sstr2 3231 |
. . . . . . 7
| |
| 21 | 19, 20 | ax-mp 5 |
. . . . . 6
|
| 22 | 21 | adantl 277 |
. . . . 5
|
| 23 | undifdcss 7085 |
. . . . . . 7
| |
| 24 | exmidexmid 4280 |
. . . . . . . . 9
| |
| 25 | 24 | ralrimivw 2604 |
. . . . . . . 8
|
| 26 | 25 | biantrud 304 |
. . . . . . 7
|
| 27 | 23, 26 | bitr4id 199 |
. . . . . 6
|
| 28 | 27 | adantr 276 |
. . . . 5
|
| 29 | 22, 28 | mpbird 167 |
. . . 4
|
| 30 | 29 | eqcomd 2235 |
. . 3
|
| 31 | 30 | adantr 276 |
. 2
|
| 32 | 18, 31 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-exmid 4279 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 |
| This theorem is referenced by: sbthlemi9 7132 |
| Copyright terms: Public domain | W3C validator |