ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi6 Unicode version

Theorem sbthlemi6 6927
Description: Lemma for isbth 6932. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlemi6  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  B )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlemi6
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpll 519 . . 3  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> EXMID )
2 simprll 527 . . 3  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  g  =  B
)
3 simprlr 528 . . 3  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  g  C_  A )
4 simprr 522 . . 3  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' g )
5 rnun 5012 . . . . 5  |-  ran  (
( f  |`  U. D
)  u.  ( `' g  |`  ( A  \ 
U. D ) ) )  =  ( ran  ( f  |`  U. D
)  u.  ran  ( `' g  |`  ( A 
\  U. D ) ) )
6 sbthlem.3 . . . . . 6  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
76rneqi 4832 . . . . 5  |-  ran  H  =  ran  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D
) ) )
8 df-ima 4617 . . . . . 6  |-  ( f
" U. D )  =  ran  ( f  |`  U. D )
98uneq1i 3272 . . . . 5  |-  ( ( f " U. D
)  u.  ran  ( `' g  |`  ( A 
\  U. D ) ) )  =  ( ran  ( f  |`  U. D
)  u.  ran  ( `' g  |`  ( A 
\  U. D ) ) )
105, 7, 93eqtr4i 2196 . . . 4  |-  ran  H  =  ( ( f
" U. D )  u.  ran  ( `' g  |`  ( A  \ 
U. D ) ) )
11 sbthlem.1 . . . . . . 7  |-  A  e. 
_V
12 sbthlem.2 . . . . . . 7  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
1311, 12sbthlemi4 6925 . . . . . 6  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
14 df-ima 4617 . . . . . 6  |-  ( `' g " ( A 
\  U. D ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) )
1513, 14eqtr3di 2214 . . . . 5  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( B  \  ( f " U. D ) )  =  ran  ( `' g  |`  ( A  \  U. D ) ) )
1615uneq2d 3276 . . . 4  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  (
( f " U. D )  u.  ( B  \  ( f " U. D ) ) )  =  ( ( f
" U. D )  u.  ran  ( `' g  |`  ( A  \ 
U. D ) ) ) )
1710, 16eqtr4id 2218 . . 3  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ran  H  =  ( ( f
" U. D )  u.  ( B  \ 
( f " U. D ) ) ) )
181, 2, 3, 4, 17syl121anc 1233 . 2  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  ( ( f " U. D
)  u.  ( B 
\  ( f " U. D ) ) ) )
19 imassrn 4957 . . . . . . 7  |-  ( f
" U. D ) 
C_  ran  f
20 sstr2 3149 . . . . . . 7  |-  ( ( f " U. D
)  C_  ran  f  -> 
( ran  f  C_  B  ->  ( f " U. D )  C_  B
) )
2119, 20ax-mp 5 . . . . . 6  |-  ( ran  f  C_  B  ->  ( f " U. D
)  C_  B )
2221adantl 275 . . . . 5  |-  ( (EXMID  /\ 
ran  f  C_  B
)  ->  ( f " U. D )  C_  B )
23 undifdcss 6888 . . . . . . 7  |-  ( B  =  ( ( f
" U. D )  u.  ( B  \ 
( f " U. D ) ) )  <-> 
( ( f " U. D )  C_  B  /\  A. y  e.  B DECID  y  e.  ( f " U. D ) ) )
24 exmidexmid 4175 . . . . . . . . 9  |-  (EXMID  -> DECID  y  e.  (
f " U. D
) )
2524ralrimivw 2540 . . . . . . . 8  |-  (EXMID  ->  A. y  e.  B DECID  y  e.  (
f " U. D
) )
2625biantrud 302 . . . . . . 7  |-  (EXMID  ->  (
( f " U. D )  C_  B  <->  ( ( f " U. D )  C_  B  /\  A. y  e.  B DECID  y  e.  ( f " U. D ) ) ) )
2723, 26bitr4id 198 . . . . . 6  |-  (EXMID  ->  ( B  =  ( (
f " U. D
)  u.  ( B 
\  ( f " U. D ) ) )  <-> 
( f " U. D )  C_  B
) )
2827adantr 274 . . . . 5  |-  ( (EXMID  /\ 
ran  f  C_  B
)  ->  ( B  =  ( ( f
" U. D )  u.  ( B  \ 
( f " U. D ) ) )  <-> 
( f " U. D )  C_  B
) )
2922, 28mpbird 166 . . . 4  |-  ( (EXMID  /\ 
ran  f  C_  B
)  ->  B  =  ( ( f " U. D )  u.  ( B  \  ( f " U. D ) ) ) )
3029eqcomd 2171 . . 3  |-  ( (EXMID  /\ 
ran  f  C_  B
)  ->  ( (
f " U. D
)  u.  ( B 
\  ( f " U. D ) ) )  =  B )
3130adantr 274 . 2  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> 
( ( f " U. D )  u.  ( B  \  ( f " U. D ) ) )  =  B )
3218, 31eqtrd 2198 1  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   _Vcvv 2726    \ cdif 3113    u. cun 3114    C_ wss 3116   U.cuni 3789  EXMIDwem 4173   `'ccnv 4603   dom cdm 4604   ran crn 4605    |` cres 4606   "cima 4607   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-exmid 4174  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190
This theorem is referenced by:  sbthlemi9  6930
  Copyright terms: Public domain W3C validator