ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmpt2 Unicode version

Theorem pcmpt2 12875
Description: Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
pcmpt.2  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
pcmpt.3  |-  ( ph  ->  N  e.  NN )
pcmpt.4  |-  ( ph  ->  P  e.  Prime )
pcmpt.5  |-  ( n  =  P  ->  A  =  B )
pcmpt2.6  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
Assertion
Ref Expression
pcmpt2  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
Distinct variable groups:    B, n    P, n
Allowed substitution hints:    ph( n)    A( n)    F( n)    M( n)    N( n)

Proof of Theorem pcmpt2
StepHypRef Expression
1 pcmpt.4 . . 3  |-  ( ph  ->  P  e.  Prime )
2 pcmpt.1 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
3 pcmpt.2 . . . . . . 7  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
42, 3pcmptcl 12873 . . . . . 6  |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
54simprd 114 . . . . 5  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> NN )
6 pcmpt.3 . . . . . 6  |-  ( ph  ->  N  e.  NN )
7 pcmpt2.6 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
8 eluznn 9803 . . . . . 6  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN )
96, 7, 8syl2anc 411 . . . . 5  |-  ( ph  ->  M  e.  NN )
105, 9ffvelcdmd 5773 . . . 4  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  NN )
1110nnzd 9576 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )
1210nnne0d 9163 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  =/=  0 )
135, 6ffvelcdmd 5773 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  NN )
14 pcdiv 12833 . . 3  |-  ( ( P  e.  Prime  /\  (
(  seq 1 (  x.  ,  F ) `  M )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `
 M )  =/=  0 )  /\  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )  ->  ( P  pCnt  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) ) )  =  ( ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  M )
)  -  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  N )
) ) )
151, 11, 12, 13, 14syl121anc 1276 . 2  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M ) )  -  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) ) ) )
16 pcmpt.5 . . . 4  |-  ( n  =  P  ->  A  =  B )
172, 3, 9, 1, 16pcmpt 12874 . . 3  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M
) )  =  if ( P  <_  M ,  B ,  0 ) )
182, 3, 6, 1, 16pcmpt 12874 . . 3  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( P  <_  N ,  B ,  0 ) )
1917, 18oveq12d 6025 . 2  |-  ( ph  ->  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M ) )  -  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) ) )
2016eleq1d 2298 . . . . . . . 8  |-  ( n  =  P  ->  ( A  e.  NN0  <->  B  e.  NN0 ) )
2120, 3, 1rspcdva 2912 . . . . . . 7  |-  ( ph  ->  B  e.  NN0 )
2221nn0cnd 9432 . . . . . 6  |-  ( ph  ->  B  e.  CC )
2322subidd 8453 . . . . 5  |-  ( ph  ->  ( B  -  B
)  =  0 )
2423adantr 276 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  ( B  -  B )  =  0 )
25 prmnn 12640 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
261, 25syl 14 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN )
2726nnred 9131 . . . . . . . 8  |-  ( ph  ->  P  e.  RR )
2827adantr 276 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  P  e.  RR )
296nnred 9131 . . . . . . . 8  |-  ( ph  ->  N  e.  RR )
3029adantr 276 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  N  e.  RR )
319nnred 9131 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
3231adantr 276 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  M  e.  RR )
33 simpr 110 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  P  <_  N )
34 eluzle 9742 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  <_  M )
357, 34syl 14 . . . . . . . 8  |-  ( ph  ->  N  <_  M )
3635adantr 276 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  N  <_  M )
3728, 30, 32, 33, 36letrd 8278 . . . . . 6  |-  ( (
ph  /\  P  <_  N )  ->  P  <_  M )
3837iftrued 3609 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  if ( P  <_  M ,  B ,  0 )  =  B )
39 iftrue 3607 . . . . . 6  |-  ( P  <_  N  ->  if ( P  <_  N ,  B ,  0 )  =  B )
4039adantl 277 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  if ( P  <_  N ,  B ,  0 )  =  B )
4138, 40oveq12d 6025 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  ( B  -  B ) )
42 simpr 110 . . . . . 6  |-  ( ( P  <_  M  /\  -.  P  <_  N )  ->  -.  P  <_  N )
4342, 33nsyl3 629 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  -.  ( P  <_  M  /\  -.  P  <_  N ) )
4443iffalsed 3612 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  if (
( P  <_  M  /\  -.  P  <_  N
) ,  B , 
0 )  =  0 )
4524, 41, 443eqtr4d 2272 . . 3  |-  ( (
ph  /\  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
46 iffalse 3610 . . . . . 6  |-  ( -.  P  <_  N  ->  if ( P  <_  N ,  B ,  0 )  =  0 )
4746oveq2d 6023 . . . . 5  |-  ( -.  P  <_  N  ->  ( if ( P  <_  M ,  B , 
0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  ( if ( P  <_  M ,  B ,  0 )  -  0 ) )
48 0cnd 8147 . . . . . . 7  |-  ( ph  ->  0  e.  CC )
4926nnzd 9576 . . . . . . . 8  |-  ( ph  ->  P  e.  ZZ )
509nnzd 9576 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
51 zdcle 9531 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  M  e.  ZZ )  -> DECID  P  <_  M )
5249, 50, 51syl2anc 411 . . . . . . 7  |-  ( ph  -> DECID  P  <_  M )
5322, 48, 52ifcldcd 3640 . . . . . 6  |-  ( ph  ->  if ( P  <_  M ,  B , 
0 )  e.  CC )
5453subid1d 8454 . . . . 5  |-  ( ph  ->  ( if ( P  <_  M ,  B ,  0 )  - 
0 )  =  if ( P  <_  M ,  B ,  0 ) )
5547, 54sylan9eqr 2284 . . . 4  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( P  <_  M ,  B ,  0 ) )
56 simpr 110 . . . . . 6  |-  ( (
ph  /\  -.  P  <_  N )  ->  -.  P  <_  N )
5756biantrud 304 . . . . 5  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( P  <_  M  <->  ( P  <_  M  /\  -.  P  <_  N ) ) )
5857ifbid 3624 . . . 4  |-  ( (
ph  /\  -.  P  <_  N )  ->  if ( P  <_  M ,  B ,  0 )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
5955, 58eqtrd 2262 . . 3  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
606nnzd 9576 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
61 zdcle 9531 . . . . 5  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  -> DECID  P  <_  N )
6249, 60, 61syl2anc 411 . . . 4  |-  ( ph  -> DECID  P  <_  N )
63 exmiddc 841 . . . 4  |-  (DECID  P  <_  N  ->  ( P  <_  N  \/  -.  P  <_  N ) )
6462, 63syl 14 . . 3  |-  ( ph  ->  ( P  <_  N  \/  -.  P  <_  N
) )
6545, 59, 64mpjaodan 803 . 2  |-  ( ph  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N
) ,  B , 
0 ) )
6615, 19, 653eqtrd 2266 1  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   ifcif 3602   class class class wbr 4083    |-> cmpt 4145   -->wf 5314   ` cfv 5318  (class class class)co 6007   CCcc 8005   RRcr 8006   0cc0 8007   1c1 8008    x. cmul 8012    <_ cle 8190    - cmin 8325    / cdiv 8827   NNcn 9118   NN0cn0 9377   ZZcz 9454   ZZ>=cuz 9730    seqcseq 10677   ^cexp 10768   Primecprime 12637    pCnt cpc 12815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-gcd 12483  df-prm 12638  df-pc 12816
This theorem is referenced by:  pcmptdvds  12876
  Copyright terms: Public domain W3C validator