ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmpt2 Unicode version

Theorem pcmpt2 12371
Description: Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
pcmpt.2  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
pcmpt.3  |-  ( ph  ->  N  e.  NN )
pcmpt.4  |-  ( ph  ->  P  e.  Prime )
pcmpt.5  |-  ( n  =  P  ->  A  =  B )
pcmpt2.6  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
Assertion
Ref Expression
pcmpt2  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
Distinct variable groups:    B, n    P, n
Allowed substitution hints:    ph( n)    A( n)    F( n)    M( n)    N( n)

Proof of Theorem pcmpt2
StepHypRef Expression
1 pcmpt.4 . . 3  |-  ( ph  ->  P  e.  Prime )
2 pcmpt.1 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
3 pcmpt.2 . . . . . . 7  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
42, 3pcmptcl 12369 . . . . . 6  |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
54simprd 114 . . . . 5  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> NN )
6 pcmpt.3 . . . . . 6  |-  ( ph  ->  N  e.  NN )
7 pcmpt2.6 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
8 eluznn 9625 . . . . . 6  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN )
96, 7, 8syl2anc 411 . . . . 5  |-  ( ph  ->  M  e.  NN )
105, 9ffvelcdmd 5669 . . . 4  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  NN )
1110nnzd 9399 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )
1210nnne0d 8989 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  =/=  0 )
135, 6ffvelcdmd 5669 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  NN )
14 pcdiv 12329 . . 3  |-  ( ( P  e.  Prime  /\  (
(  seq 1 (  x.  ,  F ) `  M )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `
 M )  =/=  0 )  /\  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )  ->  ( P  pCnt  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) ) )  =  ( ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  M )
)  -  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  N )
) ) )
151, 11, 12, 13, 14syl121anc 1254 . 2  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M ) )  -  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) ) ) )
16 pcmpt.5 . . . 4  |-  ( n  =  P  ->  A  =  B )
172, 3, 9, 1, 16pcmpt 12370 . . 3  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M
) )  =  if ( P  <_  M ,  B ,  0 ) )
182, 3, 6, 1, 16pcmpt 12370 . . 3  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( P  <_  N ,  B ,  0 ) )
1917, 18oveq12d 5910 . 2  |-  ( ph  ->  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M ) )  -  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) ) )
2016eleq1d 2258 . . . . . . . 8  |-  ( n  =  P  ->  ( A  e.  NN0  <->  B  e.  NN0 ) )
2120, 3, 1rspcdva 2861 . . . . . . 7  |-  ( ph  ->  B  e.  NN0 )
2221nn0cnd 9256 . . . . . 6  |-  ( ph  ->  B  e.  CC )
2322subidd 8281 . . . . 5  |-  ( ph  ->  ( B  -  B
)  =  0 )
2423adantr 276 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  ( B  -  B )  =  0 )
25 prmnn 12137 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
261, 25syl 14 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN )
2726nnred 8957 . . . . . . . 8  |-  ( ph  ->  P  e.  RR )
2827adantr 276 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  P  e.  RR )
296nnred 8957 . . . . . . . 8  |-  ( ph  ->  N  e.  RR )
3029adantr 276 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  N  e.  RR )
319nnred 8957 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
3231adantr 276 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  M  e.  RR )
33 simpr 110 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  P  <_  N )
34 eluzle 9565 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  <_  M )
357, 34syl 14 . . . . . . . 8  |-  ( ph  ->  N  <_  M )
3635adantr 276 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  N  <_  M )
3728, 30, 32, 33, 36letrd 8106 . . . . . 6  |-  ( (
ph  /\  P  <_  N )  ->  P  <_  M )
3837iftrued 3556 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  if ( P  <_  M ,  B ,  0 )  =  B )
39 iftrue 3554 . . . . . 6  |-  ( P  <_  N  ->  if ( P  <_  N ,  B ,  0 )  =  B )
4039adantl 277 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  if ( P  <_  N ,  B ,  0 )  =  B )
4138, 40oveq12d 5910 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  ( B  -  B ) )
42 simpr 110 . . . . . 6  |-  ( ( P  <_  M  /\  -.  P  <_  N )  ->  -.  P  <_  N )
4342, 33nsyl3 627 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  -.  ( P  <_  M  /\  -.  P  <_  N ) )
4443iffalsed 3559 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  if (
( P  <_  M  /\  -.  P  <_  N
) ,  B , 
0 )  =  0 )
4524, 41, 443eqtr4d 2232 . . 3  |-  ( (
ph  /\  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
46 iffalse 3557 . . . . . 6  |-  ( -.  P  <_  N  ->  if ( P  <_  N ,  B ,  0 )  =  0 )
4746oveq2d 5908 . . . . 5  |-  ( -.  P  <_  N  ->  ( if ( P  <_  M ,  B , 
0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  ( if ( P  <_  M ,  B ,  0 )  -  0 ) )
48 0cnd 7975 . . . . . . 7  |-  ( ph  ->  0  e.  CC )
4926nnzd 9399 . . . . . . . 8  |-  ( ph  ->  P  e.  ZZ )
509nnzd 9399 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
51 zdcle 9354 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  M  e.  ZZ )  -> DECID  P  <_  M )
5249, 50, 51syl2anc 411 . . . . . . 7  |-  ( ph  -> DECID  P  <_  M )
5322, 48, 52ifcldcd 3585 . . . . . 6  |-  ( ph  ->  if ( P  <_  M ,  B , 
0 )  e.  CC )
5453subid1d 8282 . . . . 5  |-  ( ph  ->  ( if ( P  <_  M ,  B ,  0 )  - 
0 )  =  if ( P  <_  M ,  B ,  0 ) )
5547, 54sylan9eqr 2244 . . . 4  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( P  <_  M ,  B ,  0 ) )
56 simpr 110 . . . . . 6  |-  ( (
ph  /\  -.  P  <_  N )  ->  -.  P  <_  N )
5756biantrud 304 . . . . 5  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( P  <_  M  <->  ( P  <_  M  /\  -.  P  <_  N ) ) )
5857ifbid 3570 . . . 4  |-  ( (
ph  /\  -.  P  <_  N )  ->  if ( P  <_  M ,  B ,  0 )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
5955, 58eqtrd 2222 . . 3  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
606nnzd 9399 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
61 zdcle 9354 . . . . 5  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  -> DECID  P  <_  N )
6249, 60, 61syl2anc 411 . . . 4  |-  ( ph  -> DECID  P  <_  N )
63 exmiddc 837 . . . 4  |-  (DECID  P  <_  N  ->  ( P  <_  N  \/  -.  P  <_  N ) )
6462, 63syl 14 . . 3  |-  ( ph  ->  ( P  <_  N  \/  -.  P  <_  N
) )
6545, 59, 64mpjaodan 799 . 2  |-  ( ph  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N
) ,  B , 
0 ) )
6615, 19, 653eqtrd 2226 1  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2160    =/= wne 2360   A.wral 2468   ifcif 3549   class class class wbr 4018    |-> cmpt 4079   -->wf 5228   ` cfv 5232  (class class class)co 5892   CCcc 7834   RRcr 7835   0cc0 7836   1c1 7837    x. cmul 7841    <_ cle 8018    - cmin 8153    / cdiv 8654   NNcn 8944   NN0cn0 9201   ZZcz 9278   ZZ>=cuz 9553    seqcseq 10471   ^cexp 10545   Primecprime 12134    pCnt cpc 12311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-mulrcl 7935  ax-addcom 7936  ax-mulcom 7937  ax-addass 7938  ax-mulass 7939  ax-distr 7940  ax-i2m1 7941  ax-0lt1 7942  ax-1rid 7943  ax-0id 7944  ax-rnegex 7945  ax-precex 7946  ax-cnre 7947  ax-pre-ltirr 7948  ax-pre-ltwlin 7949  ax-pre-lttrn 7950  ax-pre-apti 7951  ax-pre-ltadd 7952  ax-pre-mulgt0 7953  ax-pre-mulext 7954  ax-arch 7955  ax-caucvg 7956
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-isom 5241  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-recs 6325  df-frec 6411  df-1o 6436  df-2o 6437  df-er 6554  df-en 6762  df-fin 6764  df-sup 7008  df-inf 7009  df-pnf 8019  df-mnf 8020  df-xr 8021  df-ltxr 8022  df-le 8023  df-sub 8155  df-neg 8156  df-reap 8557  df-ap 8564  df-div 8655  df-inn 8945  df-2 9003  df-3 9004  df-4 9005  df-n0 9202  df-z 9279  df-uz 9554  df-q 9645  df-rp 9679  df-fz 10034  df-fzo 10168  df-fl 10296  df-mod 10349  df-seqfrec 10472  df-exp 10546  df-cj 10878  df-re 10879  df-im 10880  df-rsqrt 11034  df-abs 11035  df-dvds 11822  df-gcd 11971  df-prm 12135  df-pc 12312
This theorem is referenced by:  pcmptdvds  12372
  Copyright terms: Public domain W3C validator