| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcmpt2 | Unicode version | ||
| Description: Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| pcmpt.1 |
|
| pcmpt.2 |
|
| pcmpt.3 |
|
| pcmpt.4 |
|
| pcmpt.5 |
|
| pcmpt2.6 |
|
| Ref | Expression |
|---|---|
| pcmpt2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcmpt.4 |
. . 3
| |
| 2 | pcmpt.1 |
. . . . . . 7
| |
| 3 | pcmpt.2 |
. . . . . . 7
| |
| 4 | 2, 3 | pcmptcl 12715 |
. . . . . 6
|
| 5 | 4 | simprd 114 |
. . . . 5
|
| 6 | pcmpt.3 |
. . . . . 6
| |
| 7 | pcmpt2.6 |
. . . . . 6
| |
| 8 | eluznn 9734 |
. . . . . 6
| |
| 9 | 6, 7, 8 | syl2anc 411 |
. . . . 5
|
| 10 | 5, 9 | ffvelcdmd 5726 |
. . . 4
|
| 11 | 10 | nnzd 9507 |
. . 3
|
| 12 | 10 | nnne0d 9094 |
. . 3
|
| 13 | 5, 6 | ffvelcdmd 5726 |
. . 3
|
| 14 | pcdiv 12675 |
. . 3
| |
| 15 | 1, 11, 12, 13, 14 | syl121anc 1255 |
. 2
|
| 16 | pcmpt.5 |
. . . 4
| |
| 17 | 2, 3, 9, 1, 16 | pcmpt 12716 |
. . 3
|
| 18 | 2, 3, 6, 1, 16 | pcmpt 12716 |
. . 3
|
| 19 | 17, 18 | oveq12d 5972 |
. 2
|
| 20 | 16 | eleq1d 2275 |
. . . . . . . 8
|
| 21 | 20, 3, 1 | rspcdva 2884 |
. . . . . . 7
|
| 22 | 21 | nn0cnd 9363 |
. . . . . 6
|
| 23 | 22 | subidd 8384 |
. . . . 5
|
| 24 | 23 | adantr 276 |
. . . 4
|
| 25 | prmnn 12482 |
. . . . . . . . . 10
| |
| 26 | 1, 25 | syl 14 |
. . . . . . . . 9
|
| 27 | 26 | nnred 9062 |
. . . . . . . 8
|
| 28 | 27 | adantr 276 |
. . . . . . 7
|
| 29 | 6 | nnred 9062 |
. . . . . . . 8
|
| 30 | 29 | adantr 276 |
. . . . . . 7
|
| 31 | 9 | nnred 9062 |
. . . . . . . 8
|
| 32 | 31 | adantr 276 |
. . . . . . 7
|
| 33 | simpr 110 |
. . . . . . 7
| |
| 34 | eluzle 9673 |
. . . . . . . . 9
| |
| 35 | 7, 34 | syl 14 |
. . . . . . . 8
|
| 36 | 35 | adantr 276 |
. . . . . . 7
|
| 37 | 28, 30, 32, 33, 36 | letrd 8209 |
. . . . . 6
|
| 38 | 37 | iftrued 3580 |
. . . . 5
|
| 39 | iftrue 3578 |
. . . . . 6
| |
| 40 | 39 | adantl 277 |
. . . . 5
|
| 41 | 38, 40 | oveq12d 5972 |
. . . 4
|
| 42 | simpr 110 |
. . . . . 6
| |
| 43 | 42, 33 | nsyl3 627 |
. . . . 5
|
| 44 | 43 | iffalsed 3583 |
. . . 4
|
| 45 | 24, 41, 44 | 3eqtr4d 2249 |
. . 3
|
| 46 | iffalse 3581 |
. . . . . 6
| |
| 47 | 46 | oveq2d 5970 |
. . . . 5
|
| 48 | 0cnd 8078 |
. . . . . . 7
| |
| 49 | 26 | nnzd 9507 |
. . . . . . . 8
|
| 50 | 9 | nnzd 9507 |
. . . . . . . 8
|
| 51 | zdcle 9462 |
. . . . . . . 8
| |
| 52 | 49, 50, 51 | syl2anc 411 |
. . . . . . 7
|
| 53 | 22, 48, 52 | ifcldcd 3610 |
. . . . . 6
|
| 54 | 53 | subid1d 8385 |
. . . . 5
|
| 55 | 47, 54 | sylan9eqr 2261 |
. . . 4
|
| 56 | simpr 110 |
. . . . . 6
| |
| 57 | 56 | biantrud 304 |
. . . . 5
|
| 58 | 57 | ifbid 3594 |
. . . 4
|
| 59 | 55, 58 | eqtrd 2239 |
. . 3
|
| 60 | 6 | nnzd 9507 |
. . . . 5
|
| 61 | zdcle 9462 |
. . . . 5
| |
| 62 | 49, 60, 61 | syl2anc 411 |
. . . 4
|
| 63 | exmiddc 838 |
. . . 4
| |
| 64 | 62, 63 | syl 14 |
. . 3
|
| 65 | 45, 59, 64 | mpjaodan 800 |
. 2
|
| 66 | 15, 19, 65 | 3eqtrd 2243 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-isom 5286 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-1o 6512 df-2o 6513 df-er 6630 df-en 6838 df-fin 6840 df-sup 7098 df-inf 7099 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-fz 10144 df-fzo 10278 df-fl 10426 df-mod 10481 df-seqfrec 10606 df-exp 10697 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-dvds 12149 df-gcd 12325 df-prm 12480 df-pc 12658 |
| This theorem is referenced by: pcmptdvds 12718 |
| Copyright terms: Public domain | W3C validator |