| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcmpt2 | Unicode version | ||
| Description: Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| pcmpt.1 |
|
| pcmpt.2 |
|
| pcmpt.3 |
|
| pcmpt.4 |
|
| pcmpt.5 |
|
| pcmpt2.6 |
|
| Ref | Expression |
|---|---|
| pcmpt2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcmpt.4 |
. . 3
| |
| 2 | pcmpt.1 |
. . . . . . 7
| |
| 3 | pcmpt.2 |
. . . . . . 7
| |
| 4 | 2, 3 | pcmptcl 12536 |
. . . . . 6
|
| 5 | 4 | simprd 114 |
. . . . 5
|
| 6 | pcmpt.3 |
. . . . . 6
| |
| 7 | pcmpt2.6 |
. . . . . 6
| |
| 8 | eluznn 9691 |
. . . . . 6
| |
| 9 | 6, 7, 8 | syl2anc 411 |
. . . . 5
|
| 10 | 5, 9 | ffvelcdmd 5701 |
. . . 4
|
| 11 | 10 | nnzd 9464 |
. . 3
|
| 12 | 10 | nnne0d 9052 |
. . 3
|
| 13 | 5, 6 | ffvelcdmd 5701 |
. . 3
|
| 14 | pcdiv 12496 |
. . 3
| |
| 15 | 1, 11, 12, 13, 14 | syl121anc 1254 |
. 2
|
| 16 | pcmpt.5 |
. . . 4
| |
| 17 | 2, 3, 9, 1, 16 | pcmpt 12537 |
. . 3
|
| 18 | 2, 3, 6, 1, 16 | pcmpt 12537 |
. . 3
|
| 19 | 17, 18 | oveq12d 5943 |
. 2
|
| 20 | 16 | eleq1d 2265 |
. . . . . . . 8
|
| 21 | 20, 3, 1 | rspcdva 2873 |
. . . . . . 7
|
| 22 | 21 | nn0cnd 9321 |
. . . . . 6
|
| 23 | 22 | subidd 8342 |
. . . . 5
|
| 24 | 23 | adantr 276 |
. . . 4
|
| 25 | prmnn 12303 |
. . . . . . . . . 10
| |
| 26 | 1, 25 | syl 14 |
. . . . . . . . 9
|
| 27 | 26 | nnred 9020 |
. . . . . . . 8
|
| 28 | 27 | adantr 276 |
. . . . . . 7
|
| 29 | 6 | nnred 9020 |
. . . . . . . 8
|
| 30 | 29 | adantr 276 |
. . . . . . 7
|
| 31 | 9 | nnred 9020 |
. . . . . . . 8
|
| 32 | 31 | adantr 276 |
. . . . . . 7
|
| 33 | simpr 110 |
. . . . . . 7
| |
| 34 | eluzle 9630 |
. . . . . . . . 9
| |
| 35 | 7, 34 | syl 14 |
. . . . . . . 8
|
| 36 | 35 | adantr 276 |
. . . . . . 7
|
| 37 | 28, 30, 32, 33, 36 | letrd 8167 |
. . . . . 6
|
| 38 | 37 | iftrued 3569 |
. . . . 5
|
| 39 | iftrue 3567 |
. . . . . 6
| |
| 40 | 39 | adantl 277 |
. . . . 5
|
| 41 | 38, 40 | oveq12d 5943 |
. . . 4
|
| 42 | simpr 110 |
. . . . . 6
| |
| 43 | 42, 33 | nsyl3 627 |
. . . . 5
|
| 44 | 43 | iffalsed 3572 |
. . . 4
|
| 45 | 24, 41, 44 | 3eqtr4d 2239 |
. . 3
|
| 46 | iffalse 3570 |
. . . . . 6
| |
| 47 | 46 | oveq2d 5941 |
. . . . 5
|
| 48 | 0cnd 8036 |
. . . . . . 7
| |
| 49 | 26 | nnzd 9464 |
. . . . . . . 8
|
| 50 | 9 | nnzd 9464 |
. . . . . . . 8
|
| 51 | zdcle 9419 |
. . . . . . . 8
| |
| 52 | 49, 50, 51 | syl2anc 411 |
. . . . . . 7
|
| 53 | 22, 48, 52 | ifcldcd 3598 |
. . . . . 6
|
| 54 | 53 | subid1d 8343 |
. . . . 5
|
| 55 | 47, 54 | sylan9eqr 2251 |
. . . 4
|
| 56 | simpr 110 |
. . . . . 6
| |
| 57 | 56 | biantrud 304 |
. . . . 5
|
| 58 | 57 | ifbid 3583 |
. . . 4
|
| 59 | 55, 58 | eqtrd 2229 |
. . 3
|
| 60 | 6 | nnzd 9464 |
. . . . 5
|
| 61 | zdcle 9419 |
. . . . 5
| |
| 62 | 49, 60, 61 | syl2anc 411 |
. . . 4
|
| 63 | exmiddc 837 |
. . . 4
| |
| 64 | 62, 63 | syl 14 |
. . 3
|
| 65 | 45, 59, 64 | mpjaodan 799 |
. 2
|
| 66 | 15, 19, 65 | 3eqtrd 2233 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-1o 6483 df-2o 6484 df-er 6601 df-en 6809 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-fl 10377 df-mod 10432 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-dvds 11970 df-gcd 12146 df-prm 12301 df-pc 12479 |
| This theorem is referenced by: pcmptdvds 12539 |
| Copyright terms: Public domain | W3C validator |