ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmpt2 Unicode version

Theorem pcmpt2 12325
Description: Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
pcmpt.2  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
pcmpt.3  |-  ( ph  ->  N  e.  NN )
pcmpt.4  |-  ( ph  ->  P  e.  Prime )
pcmpt.5  |-  ( n  =  P  ->  A  =  B )
pcmpt2.6  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
Assertion
Ref Expression
pcmpt2  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
Distinct variable groups:    B, n    P, n
Allowed substitution hints:    ph( n)    A( n)    F( n)    M( n)    N( n)

Proof of Theorem pcmpt2
StepHypRef Expression
1 pcmpt.4 . . 3  |-  ( ph  ->  P  e.  Prime )
2 pcmpt.1 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
3 pcmpt.2 . . . . . . 7  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
42, 3pcmptcl 12323 . . . . . 6  |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
54simprd 114 . . . . 5  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> NN )
6 pcmpt.3 . . . . . 6  |-  ( ph  ->  N  e.  NN )
7 pcmpt2.6 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
8 eluznn 9589 . . . . . 6  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN )
96, 7, 8syl2anc 411 . . . . 5  |-  ( ph  ->  M  e.  NN )
105, 9ffvelcdmd 5648 . . . 4  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  NN )
1110nnzd 9363 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )
1210nnne0d 8953 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  =/=  0 )
135, 6ffvelcdmd 5648 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  NN )
14 pcdiv 12285 . . 3  |-  ( ( P  e.  Prime  /\  (
(  seq 1 (  x.  ,  F ) `  M )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `
 M )  =/=  0 )  /\  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )  ->  ( P  pCnt  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) ) )  =  ( ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  M )
)  -  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  N )
) ) )
151, 11, 12, 13, 14syl121anc 1243 . 2  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M ) )  -  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) ) ) )
16 pcmpt.5 . . . 4  |-  ( n  =  P  ->  A  =  B )
172, 3, 9, 1, 16pcmpt 12324 . . 3  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M
) )  =  if ( P  <_  M ,  B ,  0 ) )
182, 3, 6, 1, 16pcmpt 12324 . . 3  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( P  <_  N ,  B ,  0 ) )
1917, 18oveq12d 5887 . 2  |-  ( ph  ->  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M ) )  -  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) ) )
2016eleq1d 2246 . . . . . . . 8  |-  ( n  =  P  ->  ( A  e.  NN0  <->  B  e.  NN0 ) )
2120, 3, 1rspcdva 2846 . . . . . . 7  |-  ( ph  ->  B  e.  NN0 )
2221nn0cnd 9220 . . . . . 6  |-  ( ph  ->  B  e.  CC )
2322subidd 8246 . . . . 5  |-  ( ph  ->  ( B  -  B
)  =  0 )
2423adantr 276 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  ( B  -  B )  =  0 )
25 prmnn 12093 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
261, 25syl 14 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN )
2726nnred 8921 . . . . . . . 8  |-  ( ph  ->  P  e.  RR )
2827adantr 276 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  P  e.  RR )
296nnred 8921 . . . . . . . 8  |-  ( ph  ->  N  e.  RR )
3029adantr 276 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  N  e.  RR )
319nnred 8921 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
3231adantr 276 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  M  e.  RR )
33 simpr 110 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  P  <_  N )
34 eluzle 9529 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  <_  M )
357, 34syl 14 . . . . . . . 8  |-  ( ph  ->  N  <_  M )
3635adantr 276 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  N  <_  M )
3728, 30, 32, 33, 36letrd 8071 . . . . . 6  |-  ( (
ph  /\  P  <_  N )  ->  P  <_  M )
3837iftrued 3541 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  if ( P  <_  M ,  B ,  0 )  =  B )
39 iftrue 3539 . . . . . 6  |-  ( P  <_  N  ->  if ( P  <_  N ,  B ,  0 )  =  B )
4039adantl 277 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  if ( P  <_  N ,  B ,  0 )  =  B )
4138, 40oveq12d 5887 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  ( B  -  B ) )
42 simpr 110 . . . . . 6  |-  ( ( P  <_  M  /\  -.  P  <_  N )  ->  -.  P  <_  N )
4342, 33nsyl3 626 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  -.  ( P  <_  M  /\  -.  P  <_  N ) )
4443iffalsed 3544 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  if (
( P  <_  M  /\  -.  P  <_  N
) ,  B , 
0 )  =  0 )
4524, 41, 443eqtr4d 2220 . . 3  |-  ( (
ph  /\  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
46 iffalse 3542 . . . . . 6  |-  ( -.  P  <_  N  ->  if ( P  <_  N ,  B ,  0 )  =  0 )
4746oveq2d 5885 . . . . 5  |-  ( -.  P  <_  N  ->  ( if ( P  <_  M ,  B , 
0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  ( if ( P  <_  M ,  B ,  0 )  -  0 ) )
48 0cnd 7941 . . . . . . 7  |-  ( ph  ->  0  e.  CC )
4926nnzd 9363 . . . . . . . 8  |-  ( ph  ->  P  e.  ZZ )
509nnzd 9363 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
51 zdcle 9318 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  M  e.  ZZ )  -> DECID  P  <_  M )
5249, 50, 51syl2anc 411 . . . . . . 7  |-  ( ph  -> DECID  P  <_  M )
5322, 48, 52ifcldcd 3569 . . . . . 6  |-  ( ph  ->  if ( P  <_  M ,  B , 
0 )  e.  CC )
5453subid1d 8247 . . . . 5  |-  ( ph  ->  ( if ( P  <_  M ,  B ,  0 )  - 
0 )  =  if ( P  <_  M ,  B ,  0 ) )
5547, 54sylan9eqr 2232 . . . 4  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( P  <_  M ,  B ,  0 ) )
56 simpr 110 . . . . . 6  |-  ( (
ph  /\  -.  P  <_  N )  ->  -.  P  <_  N )
5756biantrud 304 . . . . 5  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( P  <_  M  <->  ( P  <_  M  /\  -.  P  <_  N ) ) )
5857ifbid 3555 . . . 4  |-  ( (
ph  /\  -.  P  <_  N )  ->  if ( P  <_  M ,  B ,  0 )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
5955, 58eqtrd 2210 . . 3  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
606nnzd 9363 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
61 zdcle 9318 . . . . 5  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  -> DECID  P  <_  N )
6249, 60, 61syl2anc 411 . . . 4  |-  ( ph  -> DECID  P  <_  N )
63 exmiddc 836 . . . 4  |-  (DECID  P  <_  N  ->  ( P  <_  N  \/  -.  P  <_  N ) )
6462, 63syl 14 . . 3  |-  ( ph  ->  ( P  <_  N  \/  -.  P  <_  N
) )
6545, 59, 64mpjaodan 798 . 2  |-  ( ph  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N
) ,  B , 
0 ) )
6615, 19, 653eqtrd 2214 1  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   ifcif 3534   class class class wbr 4000    |-> cmpt 4061   -->wf 5208   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    x. cmul 7807    <_ cle 7983    - cmin 8118    / cdiv 8618   NNcn 8908   NN0cn0 9165   ZZcz 9242   ZZ>=cuz 9517    seqcseq 10431   ^cexp 10505   Primecprime 12090    pCnt cpc 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-prm 12091  df-pc 12268
This theorem is referenced by:  pcmptdvds  12326
  Copyright terms: Public domain W3C validator