| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemg | Unicode version | ||
| Description: Lemma for ennnfone 12996. Closure for |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq |
|
| ennnfonelemh.f |
|
| ennnfonelemh.ne |
|
| ennnfonelemh.g |
|
| ennnfonelemh.n |
|
| ennnfonelemh.j |
|
| ennnfonelemh.h |
|
| Ref | Expression |
|---|---|
| ennnfonelemg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemh.g |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | simpr 110 |
. . . . . . 7
| |
| 4 | 3 | fveq2d 5631 |
. . . . . 6
|
| 5 | 3 | imaeq2d 5068 |
. . . . . 6
|
| 6 | 4, 5 | eleq12d 2300 |
. . . . 5
|
| 7 | simpl 109 |
. . . . 5
| |
| 8 | 7 | dmeqd 4925 |
. . . . . . . 8
|
| 9 | 8, 4 | opeq12d 3865 |
. . . . . . 7
|
| 10 | 9 | sneqd 3679 |
. . . . . 6
|
| 11 | 7, 10 | uneq12d 3359 |
. . . . 5
|
| 12 | 6, 7, 11 | ifbieq12d 3629 |
. . . 4
|
| 13 | 12 | adantl 277 |
. . 3
|
| 14 | ssrab2 3309 |
. . . 4
| |
| 15 | simprl 529 |
. . . 4
| |
| 16 | 14, 15 | sselid 3222 |
. . 3
|
| 17 | simprr 531 |
. . 3
| |
| 18 | simplrl 535 |
. . . 4
| |
| 19 | dmeq 4923 |
. . . . . 6
| |
| 20 | 19 | eleq1d 2298 |
. . . . 5
|
| 21 | omex 4685 |
. . . . . . . 8
| |
| 22 | ennnfonelemh.f |
. . . . . . . 8
| |
| 23 | focdmex 6260 |
. . . . . . . 8
| |
| 24 | 21, 22, 23 | mpsyl 65 |
. . . . . . 7
|
| 25 | 24 | ad2antrr 488 |
. . . . . 6
|
| 26 | 21 | a1i 9 |
. . . . . 6
|
| 27 | simplrl 535 |
. . . . . . . 8
| |
| 28 | elrabi 2956 |
. . . . . . . . . 10
| |
| 29 | elpmi 6814 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | syl 14 |
. . . . . . . . 9
|
| 31 | 30 | simpld 112 |
. . . . . . . 8
|
| 32 | 27, 31 | syl 14 |
. . . . . . 7
|
| 33 | dmeq 4923 |
. . . . . . . . . . 11
| |
| 34 | 33 | eleq1d 2298 |
. . . . . . . . . 10
|
| 35 | 34 | elrab 2959 |
. . . . . . . . 9
|
| 36 | 35 | simprbi 275 |
. . . . . . . 8
|
| 37 | 27, 36 | syl 14 |
. . . . . . 7
|
| 38 | nnord 4704 |
. . . . . . . . 9
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . 8
|
| 40 | ordirr 4634 |
. . . . . . . 8
| |
| 41 | 39, 40 | syl 14 |
. . . . . . 7
|
| 42 | 22 | adantr 276 |
. . . . . . . . . 10
|
| 43 | fof 5548 |
. . . . . . . . . 10
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . . 9
|
| 45 | 44, 17 | ffvelcdmd 5771 |
. . . . . . . 8
|
| 46 | 45 | adantr 276 |
. . . . . . 7
|
| 47 | fsnunf 5839 |
. . . . . . 7
| |
| 48 | 32, 37, 41, 46, 47 | syl121anc 1276 |
. . . . . 6
|
| 49 | df-suc 4462 |
. . . . . . . . 9
| |
| 50 | peano2 4687 |
. . . . . . . . 9
| |
| 51 | 49, 50 | eqeltrrid 2317 |
. . . . . . . 8
|
| 52 | 37, 51 | syl 14 |
. . . . . . 7
|
| 53 | elomssom 4697 |
. . . . . . 7
| |
| 54 | 52, 53 | syl 14 |
. . . . . 6
|
| 55 | elpm2r 6813 |
. . . . . 6
| |
| 56 | 25, 26, 48, 54, 55 | syl22anc 1272 |
. . . . 5
|
| 57 | 48 | fdmd 5480 |
. . . . . 6
|
| 58 | 57, 52 | eqeltrd 2306 |
. . . . 5
|
| 59 | 20, 56, 58 | elrabd 2961 |
. . . 4
|
| 60 | ennnfonelemh.dceq |
. . . . . 6
| |
| 61 | 60 | adantr 276 |
. . . . 5
|
| 62 | 61, 42, 17 | ennnfonelemdc 12970 |
. . . 4
|
| 63 | 18, 59, 62 | ifcldadc 3632 |
. . 3
|
| 64 | 2, 13, 16, 17, 63 | ovmpod 6132 |
. 2
|
| 65 | 64, 63 | eqeltrd 2306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pm 6798 |
| This theorem is referenced by: ennnfonelemh 12975 ennnfonelem0 12976 ennnfonelemp1 12977 ennnfonelemom 12979 |
| Copyright terms: Public domain | W3C validator |