ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemg Unicode version

Theorem ennnfonelemg 11952
Description: Lemma for ennnfone 11974. Closure for  G. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
Assertion
Ref Expression
ennnfonelemg  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  (
f G j )  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
Distinct variable groups:    A, g, x, y    g, F, x, y    x, N    f,
g, x, y    g,
j, x, y    ph, x, y
Allowed substitution hints:    ph( f, g, j, k, n)    A( f,
j, k, n)    F( f, j, k, n)    G( x, y, f, g, j, k, n)    H( x, y, f, g, j, k, n)    J( x, y, f, g, j, k, n)    N( y, f, g, j, k, n)

Proof of Theorem ennnfonelemg
StepHypRef Expression
1 ennnfonelemh.g . . . 4  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
21a1i 9 . . 3  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) ) )
3 simpr 109 . . . . . . 7  |-  ( ( x  =  f  /\  y  =  j )  ->  y  =  j )
43fveq2d 5433 . . . . . 6  |-  ( ( x  =  f  /\  y  =  j )  ->  ( F `  y
)  =  ( F `
 j ) )
53imaeq2d 4889 . . . . . 6  |-  ( ( x  =  f  /\  y  =  j )  ->  ( F " y
)  =  ( F
" j ) )
64, 5eleq12d 2211 . . . . 5  |-  ( ( x  =  f  /\  y  =  j )  ->  ( ( F `  y )  e.  ( F " y )  <-> 
( F `  j
)  e.  ( F
" j ) ) )
7 simpl 108 . . . . 5  |-  ( ( x  =  f  /\  y  =  j )  ->  x  =  f )
87dmeqd 4749 . . . . . . . 8  |-  ( ( x  =  f  /\  y  =  j )  ->  dom  x  =  dom  f )
98, 4opeq12d 3721 . . . . . . 7  |-  ( ( x  =  f  /\  y  =  j )  -> 
<. dom  x ,  ( F `  y )
>.  =  <. dom  f ,  ( F `  j ) >. )
109sneqd 3545 . . . . . 6  |-  ( ( x  =  f  /\  y  =  j )  ->  { <. dom  x , 
( F `  y
) >. }  =  { <. dom  f ,  ( F `  j )
>. } )
117, 10uneq12d 3236 . . . . 5  |-  ( ( x  =  f  /\  y  =  j )  ->  ( x  u.  { <. dom  x ,  ( F `  y )
>. } )  =  ( f  u.  { <. dom  f ,  ( F `
 j ) >. } ) )
126, 7, 11ifbieq12d 3503 . . . 4  |-  ( ( x  =  f  /\  y  =  j )  ->  if ( ( F `
 y )  e.  ( F " y
) ,  x ,  ( x  u.  { <. dom  x ,  ( F `  y )
>. } ) )  =  if ( ( F `
 j )  e.  ( F " j
) ,  f ,  ( f  u.  { <. dom  f ,  ( F `  j )
>. } ) ) )
1312adantl 275 . . 3  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  ( x  =  f  /\  y  =  j
) )  ->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) )  =  if ( ( F `
 j )  e.  ( F " j
) ,  f ,  ( f  u.  { <. dom  f ,  ( F `  j )
>. } ) ) )
14 ssrab2 3187 . . . 4  |-  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  C_  ( A  ^pm  om )
15 simprl 521 . . . 4  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
1614, 15sseldi 3100 . . 3  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  f  e.  ( A  ^pm  om )
)
17 simprr 522 . . 3  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  j  e.  om )
18 simplrl 525 . . . 4  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  ( F `  j )  e.  ( F "
j ) )  -> 
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
19 dmeq 4747 . . . . . 6  |-  ( g  =  ( f  u. 
{ <. dom  f , 
( F `  j
) >. } )  ->  dom  g  =  dom  ( f  u.  { <. dom  f ,  ( F `  j )
>. } ) )
2019eleq1d 2209 . . . . 5  |-  ( g  =  ( f  u. 
{ <. dom  f , 
( F `  j
) >. } )  -> 
( dom  g  e.  om  <->  dom  ( f  u.  { <. dom  f ,  ( F `  j )
>. } )  e.  om ) )
21 omex 4515 . . . . . . . 8  |-  om  e.  _V
22 ennnfonelemh.f . . . . . . . 8  |-  ( ph  ->  F : om -onto-> A
)
23 focdmex 10565 . . . . . . . 8  |-  ( ( om  e.  _V  /\  F : om -onto-> A )  ->  A  e.  _V )
2421, 22, 23sylancr 411 . . . . . . 7  |-  ( ph  ->  A  e.  _V )
2524ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  A  e.  _V )
2621a1i 9 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  om  e.  _V )
27 simplrl 525 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  f  e.  {
g  e.  ( A 
^pm  om )  |  dom  g  e.  om } )
28 elrabi 2841 . . . . . . . . . 10  |-  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  ->  f  e.  ( A  ^pm  om )
)
29 elpmi 6569 . . . . . . . . . 10  |-  ( f  e.  ( A  ^pm  om )  ->  ( f : dom  f --> A  /\  dom  f  C_  om )
)
3028, 29syl 14 . . . . . . . . 9  |-  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  ->  ( f : dom  f --> A  /\  dom  f  C_  om )
)
3130simpld 111 . . . . . . . 8  |-  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  ->  f : dom  f
--> A )
3227, 31syl 14 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  f : dom  f
--> A )
33 dmeq 4747 . . . . . . . . . . 11  |-  ( g  =  f  ->  dom  g  =  dom  f )
3433eleq1d 2209 . . . . . . . . . 10  |-  ( g  =  f  ->  ( dom  g  e.  om  <->  dom  f  e.  om )
)
3534elrab 2844 . . . . . . . . 9  |-  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } 
<->  ( f  e.  ( A  ^pm  om )  /\  dom  f  e.  om ) )
3635simprbi 273 . . . . . . . 8  |-  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  ->  dom  f  e.  om )
3727, 36syl 14 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  dom  f  e.  om )
38 nnord 4533 . . . . . . . . 9  |-  ( dom  f  e.  om  ->  Ord 
dom  f )
3937, 38syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  Ord  dom  f )
40 ordirr 4465 . . . . . . . 8  |-  ( Ord 
dom  f  ->  -.  dom  f  e.  dom  f )
4139, 40syl 14 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  -.  dom  f  e. 
dom  f )
4222adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  F : om -onto-> A )
43 fof 5353 . . . . . . . . . 10  |-  ( F : om -onto-> A  ->  F : om --> A )
4442, 43syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  F : om --> A )
4544, 17ffvelrnd 5564 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  ( F `  j )  e.  A )
4645adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  ( F `  j )  e.  A
)
47 fsnunf 5628 . . . . . . 7  |-  ( ( f : dom  f --> A  /\  ( dom  f  e.  om  /\  -.  dom  f  e.  dom  f )  /\  ( F `  j )  e.  A
)  ->  ( f  u.  { <. dom  f , 
( F `  j
) >. } ) : ( dom  f  u. 
{ dom  f }
) --> A )
4832, 37, 41, 46, 47syl121anc 1222 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  ( f  u. 
{ <. dom  f , 
( F `  j
) >. } ) : ( dom  f  u. 
{ dom  f }
) --> A )
49 df-suc 4301 . . . . . . . . 9  |-  suc  dom  f  =  ( dom  f  u.  { dom  f } )
50 peano2 4517 . . . . . . . . 9  |-  ( dom  f  e.  om  ->  suc 
dom  f  e.  om )
5149, 50eqeltrrid 2228 . . . . . . . 8  |-  ( dom  f  e.  om  ->  ( dom  f  u.  { dom  f } )  e. 
om )
5237, 51syl 14 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  ( dom  f  u.  { dom  f } )  e.  om )
53 omelon 4530 . . . . . . . 8  |-  om  e.  On
5453onelssi 4359 . . . . . . 7  |-  ( ( dom  f  u.  { dom  f } )  e. 
om  ->  ( dom  f  u.  { dom  f } )  C_  om )
5552, 54syl 14 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  ( dom  f  u.  { dom  f } )  C_  om )
56 elpm2r 6568 . . . . . 6  |-  ( ( ( A  e.  _V  /\ 
om  e.  _V )  /\  ( ( f  u. 
{ <. dom  f , 
( F `  j
) >. } ) : ( dom  f  u. 
{ dom  f }
) --> A  /\  ( dom  f  u.  { dom  f } )  C_  om )
)  ->  ( f  u.  { <. dom  f , 
( F `  j
) >. } )  e.  ( A  ^pm  om )
)
5725, 26, 48, 55, 56syl22anc 1218 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  ( f  u. 
{ <. dom  f , 
( F `  j
) >. } )  e.  ( A  ^pm  om )
)
5848fdmd 5287 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  dom  ( f  u.  { <. dom  f , 
( F `  j
) >. } )  =  ( dom  f  u. 
{ dom  f }
) )
5958, 52eqeltrd 2217 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  dom  ( f  u.  { <. dom  f , 
( F `  j
) >. } )  e. 
om )
6020, 57, 59elrabd 2846 . . . 4  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  ( f  u. 
{ <. dom  f , 
( F `  j
) >. } )  e. 
{ g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
61 ennnfonelemh.dceq . . . . . 6  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
6261adantr 274 . . . . 5  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
6362, 42, 17ennnfonelemdc 11948 . . . 4  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  -> DECID  ( F `  j
)  e.  ( F
" j ) )
6418, 60, 63ifcldadc 3506 . . 3  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  if ( ( F `  j )  e.  ( F " j ) ,  f ,  ( f  u.  { <. dom  f ,  ( F `
 j ) >. } ) )  e. 
{ g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
652, 13, 16, 17, 64ovmpod 5906 . 2  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  (
f G j )  =  if ( ( F `  j )  e.  ( F "
j ) ,  f ,  ( f  u. 
{ <. dom  f , 
( F `  j
) >. } ) ) )
6665, 64eqeltrd 2217 1  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  (
f G j )  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 820    = wceq 1332    e. wcel 1481    =/= wne 2309   A.wral 2417   E.wrex 2418   {crab 2421   _Vcvv 2689    u. cun 3074    C_ wss 3076   (/)c0 3368   ifcif 3479   {csn 3532   <.cop 3535    |-> cmpt 3997   Ord word 4292   suc csuc 4295   omcom 4512   `'ccnv 4546   dom cdm 4547   "cima 4550   -->wf 5127   -onto->wfo 5129   ` cfv 5131  (class class class)co 5782    e. cmpo 5784  freccfrec 6295    ^pm cpm 6551   0cc0 7644   1c1 7645    + caddc 7647    - cmin 7957   NN0cn0 9001   ZZcz 9078    seqcseq 10249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pm 6553
This theorem is referenced by:  ennnfonelemh  11953  ennnfonelem0  11954  ennnfonelemp1  11955  ennnfonelemom  11957
  Copyright terms: Public domain W3C validator