Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemg | Unicode version |
Description: Lemma for ennnfone 12358. Closure for . (Contributed by Jim Kingdon, 20-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | DECID |
ennnfonelemh.f | |
ennnfonelemh.ne | |
ennnfonelemh.g | |
ennnfonelemh.n | frec |
ennnfonelemh.j | |
ennnfonelemh.h |
Ref | Expression |
---|---|
ennnfonelemg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemh.g | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | simpr 109 | . . . . . . 7 | |
4 | 3 | fveq2d 5490 | . . . . . 6 |
5 | 3 | imaeq2d 4946 | . . . . . 6 |
6 | 4, 5 | eleq12d 2237 | . . . . 5 |
7 | simpl 108 | . . . . 5 | |
8 | 7 | dmeqd 4806 | . . . . . . . 8 |
9 | 8, 4 | opeq12d 3766 | . . . . . . 7 |
10 | 9 | sneqd 3589 | . . . . . 6 |
11 | 7, 10 | uneq12d 3277 | . . . . 5 |
12 | 6, 7, 11 | ifbieq12d 3546 | . . . 4 |
13 | 12 | adantl 275 | . . 3 |
14 | ssrab2 3227 | . . . 4 | |
15 | simprl 521 | . . . 4 | |
16 | 14, 15 | sselid 3140 | . . 3 |
17 | simprr 522 | . . 3 | |
18 | simplrl 525 | . . . 4 | |
19 | dmeq 4804 | . . . . . 6 | |
20 | 19 | eleq1d 2235 | . . . . 5 |
21 | omex 4570 | . . . . . . . 8 | |
22 | ennnfonelemh.f | . . . . . . . 8 | |
23 | focdmex 10700 | . . . . . . . 8 | |
24 | 21, 22, 23 | sylancr 411 | . . . . . . 7 |
25 | 24 | ad2antrr 480 | . . . . . 6 |
26 | 21 | a1i 9 | . . . . . 6 |
27 | simplrl 525 | . . . . . . . 8 | |
28 | elrabi 2879 | . . . . . . . . . 10 | |
29 | elpmi 6633 | . . . . . . . . . 10 | |
30 | 28, 29 | syl 14 | . . . . . . . . 9 |
31 | 30 | simpld 111 | . . . . . . . 8 |
32 | 27, 31 | syl 14 | . . . . . . 7 |
33 | dmeq 4804 | . . . . . . . . . . 11 | |
34 | 33 | eleq1d 2235 | . . . . . . . . . 10 |
35 | 34 | elrab 2882 | . . . . . . . . 9 |
36 | 35 | simprbi 273 | . . . . . . . 8 |
37 | 27, 36 | syl 14 | . . . . . . 7 |
38 | nnord 4589 | . . . . . . . . 9 | |
39 | 37, 38 | syl 14 | . . . . . . . 8 |
40 | ordirr 4519 | . . . . . . . 8 | |
41 | 39, 40 | syl 14 | . . . . . . 7 |
42 | 22 | adantr 274 | . . . . . . . . . 10 |
43 | fof 5410 | . . . . . . . . . 10 | |
44 | 42, 43 | syl 14 | . . . . . . . . 9 |
45 | 44, 17 | ffvelrnd 5621 | . . . . . . . 8 |
46 | 45 | adantr 274 | . . . . . . 7 |
47 | fsnunf 5685 | . . . . . . 7 | |
48 | 32, 37, 41, 46, 47 | syl121anc 1233 | . . . . . 6 |
49 | df-suc 4349 | . . . . . . . . 9 | |
50 | peano2 4572 | . . . . . . . . 9 | |
51 | 49, 50 | eqeltrrid 2254 | . . . . . . . 8 |
52 | 37, 51 | syl 14 | . . . . . . 7 |
53 | omelon 4586 | . . . . . . . 8 | |
54 | 53 | onelssi 4407 | . . . . . . 7 |
55 | 52, 54 | syl 14 | . . . . . 6 |
56 | elpm2r 6632 | . . . . . 6 | |
57 | 25, 26, 48, 55, 56 | syl22anc 1229 | . . . . 5 |
58 | 48 | fdmd 5344 | . . . . . 6 |
59 | 58, 52 | eqeltrd 2243 | . . . . 5 |
60 | 20, 57, 59 | elrabd 2884 | . . . 4 |
61 | ennnfonelemh.dceq | . . . . . 6 DECID | |
62 | 61 | adantr 274 | . . . . 5 DECID |
63 | 62, 42, 17 | ennnfonelemdc 12332 | . . . 4 DECID |
64 | 18, 60, 63 | ifcldadc 3549 | . . 3 |
65 | 2, 13, 16, 17, 64 | ovmpod 5969 | . 2 |
66 | 65, 64 | eqeltrd 2243 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 DECID wdc 824 wceq 1343 wcel 2136 wne 2336 wral 2444 wrex 2445 crab 2448 cvv 2726 cun 3114 wss 3116 c0 3409 cif 3520 csn 3576 cop 3579 cmpt 4043 word 4340 csuc 4343 com 4567 ccnv 4603 cdm 4604 cima 4607 wf 5184 wfo 5186 cfv 5188 (class class class)co 5842 cmpo 5844 freccfrec 6358 cpm 6615 cc0 7753 c1 7754 caddc 7756 cmin 8069 cn0 9114 cz 9191 cseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pm 6617 |
This theorem is referenced by: ennnfonelemh 12337 ennnfonelem0 12338 ennnfonelemp1 12339 ennnfonelemom 12341 |
Copyright terms: Public domain | W3C validator |