| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemg | Unicode version | ||
| Description: Lemma for ennnfone 12667. Closure for |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq |
|
| ennnfonelemh.f |
|
| ennnfonelemh.ne |
|
| ennnfonelemh.g |
|
| ennnfonelemh.n |
|
| ennnfonelemh.j |
|
| ennnfonelemh.h |
|
| Ref | Expression |
|---|---|
| ennnfonelemg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemh.g |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | simpr 110 |
. . . . . . 7
| |
| 4 | 3 | fveq2d 5565 |
. . . . . 6
|
| 5 | 3 | imaeq2d 5010 |
. . . . . 6
|
| 6 | 4, 5 | eleq12d 2267 |
. . . . 5
|
| 7 | simpl 109 |
. . . . 5
| |
| 8 | 7 | dmeqd 4869 |
. . . . . . . 8
|
| 9 | 8, 4 | opeq12d 3817 |
. . . . . . 7
|
| 10 | 9 | sneqd 3636 |
. . . . . 6
|
| 11 | 7, 10 | uneq12d 3319 |
. . . . 5
|
| 12 | 6, 7, 11 | ifbieq12d 3588 |
. . . 4
|
| 13 | 12 | adantl 277 |
. . 3
|
| 14 | ssrab2 3269 |
. . . 4
| |
| 15 | simprl 529 |
. . . 4
| |
| 16 | 14, 15 | sselid 3182 |
. . 3
|
| 17 | simprr 531 |
. . 3
| |
| 18 | simplrl 535 |
. . . 4
| |
| 19 | dmeq 4867 |
. . . . . 6
| |
| 20 | 19 | eleq1d 2265 |
. . . . 5
|
| 21 | omex 4630 |
. . . . . . . 8
| |
| 22 | ennnfonelemh.f |
. . . . . . . 8
| |
| 23 | focdmex 6181 |
. . . . . . . 8
| |
| 24 | 21, 22, 23 | mpsyl 65 |
. . . . . . 7
|
| 25 | 24 | ad2antrr 488 |
. . . . . 6
|
| 26 | 21 | a1i 9 |
. . . . . 6
|
| 27 | simplrl 535 |
. . . . . . . 8
| |
| 28 | elrabi 2917 |
. . . . . . . . . 10
| |
| 29 | elpmi 6735 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | syl 14 |
. . . . . . . . 9
|
| 31 | 30 | simpld 112 |
. . . . . . . 8
|
| 32 | 27, 31 | syl 14 |
. . . . . . 7
|
| 33 | dmeq 4867 |
. . . . . . . . . . 11
| |
| 34 | 33 | eleq1d 2265 |
. . . . . . . . . 10
|
| 35 | 34 | elrab 2920 |
. . . . . . . . 9
|
| 36 | 35 | simprbi 275 |
. . . . . . . 8
|
| 37 | 27, 36 | syl 14 |
. . . . . . 7
|
| 38 | nnord 4649 |
. . . . . . . . 9
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . 8
|
| 40 | ordirr 4579 |
. . . . . . . 8
| |
| 41 | 39, 40 | syl 14 |
. . . . . . 7
|
| 42 | 22 | adantr 276 |
. . . . . . . . . 10
|
| 43 | fof 5483 |
. . . . . . . . . 10
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . . 9
|
| 45 | 44, 17 | ffvelcdmd 5701 |
. . . . . . . 8
|
| 46 | 45 | adantr 276 |
. . . . . . 7
|
| 47 | fsnunf 5765 |
. . . . . . 7
| |
| 48 | 32, 37, 41, 46, 47 | syl121anc 1254 |
. . . . . 6
|
| 49 | df-suc 4407 |
. . . . . . . . 9
| |
| 50 | peano2 4632 |
. . . . . . . . 9
| |
| 51 | 49, 50 | eqeltrrid 2284 |
. . . . . . . 8
|
| 52 | 37, 51 | syl 14 |
. . . . . . 7
|
| 53 | elomssom 4642 |
. . . . . . 7
| |
| 54 | 52, 53 | syl 14 |
. . . . . 6
|
| 55 | elpm2r 6734 |
. . . . . 6
| |
| 56 | 25, 26, 48, 54, 55 | syl22anc 1250 |
. . . . 5
|
| 57 | 48 | fdmd 5417 |
. . . . . 6
|
| 58 | 57, 52 | eqeltrd 2273 |
. . . . 5
|
| 59 | 20, 56, 58 | elrabd 2922 |
. . . 4
|
| 60 | ennnfonelemh.dceq |
. . . . . 6
| |
| 61 | 60 | adantr 276 |
. . . . 5
|
| 62 | 61, 42, 17 | ennnfonelemdc 12641 |
. . . 4
|
| 63 | 18, 59, 62 | ifcldadc 3591 |
. . 3
|
| 64 | 2, 13, 16, 17, 63 | ovmpod 6054 |
. 2
|
| 65 | 64, 63 | eqeltrd 2273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pm 6719 |
| This theorem is referenced by: ennnfonelemh 12646 ennnfonelem0 12647 ennnfonelemp1 12648 ennnfonelemom 12650 |
| Copyright terms: Public domain | W3C validator |