ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemg Unicode version

Theorem ennnfonelemg 12560
Description: Lemma for ennnfone 12582. Closure for  G. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
Assertion
Ref Expression
ennnfonelemg  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  (
f G j )  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
Distinct variable groups:    A, g, x, y    g, F, x, y    x, N    f,
g, x, y    g,
j, x, y    ph, x, y
Allowed substitution hints:    ph( f, g, j, k, n)    A( f,
j, k, n)    F( f, j, k, n)    G( x, y, f, g, j, k, n)    H( x, y, f, g, j, k, n)    J( x, y, f, g, j, k, n)    N( y, f, g, j, k, n)

Proof of Theorem ennnfonelemg
StepHypRef Expression
1 ennnfonelemh.g . . . 4  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
21a1i 9 . . 3  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) ) )
3 simpr 110 . . . . . . 7  |-  ( ( x  =  f  /\  y  =  j )  ->  y  =  j )
43fveq2d 5558 . . . . . 6  |-  ( ( x  =  f  /\  y  =  j )  ->  ( F `  y
)  =  ( F `
 j ) )
53imaeq2d 5005 . . . . . 6  |-  ( ( x  =  f  /\  y  =  j )  ->  ( F " y
)  =  ( F
" j ) )
64, 5eleq12d 2264 . . . . 5  |-  ( ( x  =  f  /\  y  =  j )  ->  ( ( F `  y )  e.  ( F " y )  <-> 
( F `  j
)  e.  ( F
" j ) ) )
7 simpl 109 . . . . 5  |-  ( ( x  =  f  /\  y  =  j )  ->  x  =  f )
87dmeqd 4864 . . . . . . . 8  |-  ( ( x  =  f  /\  y  =  j )  ->  dom  x  =  dom  f )
98, 4opeq12d 3812 . . . . . . 7  |-  ( ( x  =  f  /\  y  =  j )  -> 
<. dom  x ,  ( F `  y )
>.  =  <. dom  f ,  ( F `  j ) >. )
109sneqd 3631 . . . . . 6  |-  ( ( x  =  f  /\  y  =  j )  ->  { <. dom  x , 
( F `  y
) >. }  =  { <. dom  f ,  ( F `  j )
>. } )
117, 10uneq12d 3314 . . . . 5  |-  ( ( x  =  f  /\  y  =  j )  ->  ( x  u.  { <. dom  x ,  ( F `  y )
>. } )  =  ( f  u.  { <. dom  f ,  ( F `
 j ) >. } ) )
126, 7, 11ifbieq12d 3583 . . . 4  |-  ( ( x  =  f  /\  y  =  j )  ->  if ( ( F `
 y )  e.  ( F " y
) ,  x ,  ( x  u.  { <. dom  x ,  ( F `  y )
>. } ) )  =  if ( ( F `
 j )  e.  ( F " j
) ,  f ,  ( f  u.  { <. dom  f ,  ( F `  j )
>. } ) ) )
1312adantl 277 . . 3  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  ( x  =  f  /\  y  =  j
) )  ->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) )  =  if ( ( F `
 j )  e.  ( F " j
) ,  f ,  ( f  u.  { <. dom  f ,  ( F `  j )
>. } ) ) )
14 ssrab2 3264 . . . 4  |-  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  C_  ( A  ^pm  om )
15 simprl 529 . . . 4  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
1614, 15sselid 3177 . . 3  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  f  e.  ( A  ^pm  om )
)
17 simprr 531 . . 3  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  j  e.  om )
18 simplrl 535 . . . 4  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  ( F `  j )  e.  ( F "
j ) )  -> 
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
19 dmeq 4862 . . . . . 6  |-  ( g  =  ( f  u. 
{ <. dom  f , 
( F `  j
) >. } )  ->  dom  g  =  dom  ( f  u.  { <. dom  f ,  ( F `  j )
>. } ) )
2019eleq1d 2262 . . . . 5  |-  ( g  =  ( f  u. 
{ <. dom  f , 
( F `  j
) >. } )  -> 
( dom  g  e.  om  <->  dom  ( f  u.  { <. dom  f ,  ( F `  j )
>. } )  e.  om ) )
21 omex 4625 . . . . . . . 8  |-  om  e.  _V
22 ennnfonelemh.f . . . . . . . 8  |-  ( ph  ->  F : om -onto-> A
)
23 focdmex 6167 . . . . . . . 8  |-  ( om  e.  _V  ->  ( F : om -onto-> A  ->  A  e.  _V )
)
2421, 22, 23mpsyl 65 . . . . . . 7  |-  ( ph  ->  A  e.  _V )
2524ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  A  e.  _V )
2621a1i 9 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  om  e.  _V )
27 simplrl 535 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  f  e.  {
g  e.  ( A 
^pm  om )  |  dom  g  e.  om } )
28 elrabi 2913 . . . . . . . . . 10  |-  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  ->  f  e.  ( A  ^pm  om )
)
29 elpmi 6721 . . . . . . . . . 10  |-  ( f  e.  ( A  ^pm  om )  ->  ( f : dom  f --> A  /\  dom  f  C_  om )
)
3028, 29syl 14 . . . . . . . . 9  |-  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  ->  ( f : dom  f --> A  /\  dom  f  C_  om )
)
3130simpld 112 . . . . . . . 8  |-  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  ->  f : dom  f
--> A )
3227, 31syl 14 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  f : dom  f
--> A )
33 dmeq 4862 . . . . . . . . . . 11  |-  ( g  =  f  ->  dom  g  =  dom  f )
3433eleq1d 2262 . . . . . . . . . 10  |-  ( g  =  f  ->  ( dom  g  e.  om  <->  dom  f  e.  om )
)
3534elrab 2916 . . . . . . . . 9  |-  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } 
<->  ( f  e.  ( A  ^pm  om )  /\  dom  f  e.  om ) )
3635simprbi 275 . . . . . . . 8  |-  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  ->  dom  f  e.  om )
3727, 36syl 14 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  dom  f  e.  om )
38 nnord 4644 . . . . . . . . 9  |-  ( dom  f  e.  om  ->  Ord 
dom  f )
3937, 38syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  Ord  dom  f )
40 ordirr 4574 . . . . . . . 8  |-  ( Ord 
dom  f  ->  -.  dom  f  e.  dom  f )
4139, 40syl 14 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  -.  dom  f  e. 
dom  f )
4222adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  F : om -onto-> A )
43 fof 5476 . . . . . . . . . 10  |-  ( F : om -onto-> A  ->  F : om --> A )
4442, 43syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  F : om --> A )
4544, 17ffvelcdmd 5694 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  ( F `  j )  e.  A )
4645adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  ( F `  j )  e.  A
)
47 fsnunf 5758 . . . . . . 7  |-  ( ( f : dom  f --> A  /\  ( dom  f  e.  om  /\  -.  dom  f  e.  dom  f )  /\  ( F `  j )  e.  A
)  ->  ( f  u.  { <. dom  f , 
( F `  j
) >. } ) : ( dom  f  u. 
{ dom  f }
) --> A )
4832, 37, 41, 46, 47syl121anc 1254 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  ( f  u. 
{ <. dom  f , 
( F `  j
) >. } ) : ( dom  f  u. 
{ dom  f }
) --> A )
49 df-suc 4402 . . . . . . . . 9  |-  suc  dom  f  =  ( dom  f  u.  { dom  f } )
50 peano2 4627 . . . . . . . . 9  |-  ( dom  f  e.  om  ->  suc 
dom  f  e.  om )
5149, 50eqeltrrid 2281 . . . . . . . 8  |-  ( dom  f  e.  om  ->  ( dom  f  u.  { dom  f } )  e. 
om )
5237, 51syl 14 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  ( dom  f  u.  { dom  f } )  e.  om )
53 elomssom 4637 . . . . . . 7  |-  ( ( dom  f  u.  { dom  f } )  e. 
om  ->  ( dom  f  u.  { dom  f } )  C_  om )
5452, 53syl 14 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  ( dom  f  u.  { dom  f } )  C_  om )
55 elpm2r 6720 . . . . . 6  |-  ( ( ( A  e.  _V  /\ 
om  e.  _V )  /\  ( ( f  u. 
{ <. dom  f , 
( F `  j
) >. } ) : ( dom  f  u. 
{ dom  f }
) --> A  /\  ( dom  f  u.  { dom  f } )  C_  om )
)  ->  ( f  u.  { <. dom  f , 
( F `  j
) >. } )  e.  ( A  ^pm  om )
)
5625, 26, 48, 54, 55syl22anc 1250 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  ( f  u. 
{ <. dom  f , 
( F `  j
) >. } )  e.  ( A  ^pm  om )
)
5748fdmd 5410 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  dom  ( f  u.  { <. dom  f , 
( F `  j
) >. } )  =  ( dom  f  u. 
{ dom  f }
) )
5857, 52eqeltrd 2270 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  dom  ( f  u.  { <. dom  f , 
( F `  j
) >. } )  e. 
om )
5920, 56, 58elrabd 2918 . . . 4  |-  ( ( ( ph  /\  (
f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  /\  -.  ( F `  j
)  e.  ( F
" j ) )  ->  ( f  u. 
{ <. dom  f , 
( F `  j
) >. } )  e. 
{ g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
60 ennnfonelemh.dceq . . . . . 6  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
6160adantr 276 . . . . 5  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
6261, 42, 17ennnfonelemdc 12556 . . . 4  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  -> DECID  ( F `  j
)  e.  ( F
" j ) )
6318, 59, 62ifcldadc 3586 . . 3  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  if ( ( F `  j )  e.  ( F " j ) ,  f ,  ( f  u.  { <. dom  f ,  ( F `
 j ) >. } ) )  e. 
{ g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
642, 13, 16, 17, 63ovmpod 6046 . 2  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  (
f G j )  =  if ( ( F `  j )  e.  ( F "
j ) ,  f ,  ( f  u. 
{ <. dom  f , 
( F `  j
) >. } ) ) )
6564, 63eqeltrd 2270 1  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  (
f G j )  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472   E.wrex 2473   {crab 2476   _Vcvv 2760    u. cun 3151    C_ wss 3153   (/)c0 3446   ifcif 3557   {csn 3618   <.cop 3621    |-> cmpt 4090   Ord word 4393   suc csuc 4396   omcom 4622   `'ccnv 4658   dom cdm 4659   "cima 4662   -->wf 5250   -onto->wfo 5252   ` cfv 5254  (class class class)co 5918    e. cmpo 5920  freccfrec 6443    ^pm cpm 6703   0cc0 7872   1c1 7873    + caddc 7875    - cmin 8190   NN0cn0 9240   ZZcz 9317    seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pm 6705
This theorem is referenced by:  ennnfonelemh  12561  ennnfonelem0  12562  ennnfonelemp1  12563  ennnfonelemom  12565
  Copyright terms: Public domain W3C validator