Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemg | Unicode version |
Description: Lemma for ennnfone 12380. Closure for . (Contributed by Jim Kingdon, 20-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | DECID |
ennnfonelemh.f | |
ennnfonelemh.ne | |
ennnfonelemh.g | |
ennnfonelemh.n | frec |
ennnfonelemh.j | |
ennnfonelemh.h |
Ref | Expression |
---|---|
ennnfonelemg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemh.g | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | simpr 109 | . . . . . . 7 | |
4 | 3 | fveq2d 5500 | . . . . . 6 |
5 | 3 | imaeq2d 4953 | . . . . . 6 |
6 | 4, 5 | eleq12d 2241 | . . . . 5 |
7 | simpl 108 | . . . . 5 | |
8 | 7 | dmeqd 4813 | . . . . . . . 8 |
9 | 8, 4 | opeq12d 3773 | . . . . . . 7 |
10 | 9 | sneqd 3596 | . . . . . 6 |
11 | 7, 10 | uneq12d 3282 | . . . . 5 |
12 | 6, 7, 11 | ifbieq12d 3552 | . . . 4 |
13 | 12 | adantl 275 | . . 3 |
14 | ssrab2 3232 | . . . 4 | |
15 | simprl 526 | . . . 4 | |
16 | 14, 15 | sselid 3145 | . . 3 |
17 | simprr 527 | . . 3 | |
18 | simplrl 530 | . . . 4 | |
19 | dmeq 4811 | . . . . . 6 | |
20 | 19 | eleq1d 2239 | . . . . 5 |
21 | omex 4577 | . . . . . . . 8 | |
22 | ennnfonelemh.f | . . . . . . . 8 | |
23 | focdmex 10721 | . . . . . . . 8 | |
24 | 21, 22, 23 | sylancr 412 | . . . . . . 7 |
25 | 24 | ad2antrr 485 | . . . . . 6 |
26 | 21 | a1i 9 | . . . . . 6 |
27 | simplrl 530 | . . . . . . . 8 | |
28 | elrabi 2883 | . . . . . . . . . 10 | |
29 | elpmi 6645 | . . . . . . . . . 10 | |
30 | 28, 29 | syl 14 | . . . . . . . . 9 |
31 | 30 | simpld 111 | . . . . . . . 8 |
32 | 27, 31 | syl 14 | . . . . . . 7 |
33 | dmeq 4811 | . . . . . . . . . . 11 | |
34 | 33 | eleq1d 2239 | . . . . . . . . . 10 |
35 | 34 | elrab 2886 | . . . . . . . . 9 |
36 | 35 | simprbi 273 | . . . . . . . 8 |
37 | 27, 36 | syl 14 | . . . . . . 7 |
38 | nnord 4596 | . . . . . . . . 9 | |
39 | 37, 38 | syl 14 | . . . . . . . 8 |
40 | ordirr 4526 | . . . . . . . 8 | |
41 | 39, 40 | syl 14 | . . . . . . 7 |
42 | 22 | adantr 274 | . . . . . . . . . 10 |
43 | fof 5420 | . . . . . . . . . 10 | |
44 | 42, 43 | syl 14 | . . . . . . . . 9 |
45 | 44, 17 | ffvelrnd 5632 | . . . . . . . 8 |
46 | 45 | adantr 274 | . . . . . . 7 |
47 | fsnunf 5696 | . . . . . . 7 | |
48 | 32, 37, 41, 46, 47 | syl121anc 1238 | . . . . . 6 |
49 | df-suc 4356 | . . . . . . . . 9 | |
50 | peano2 4579 | . . . . . . . . 9 | |
51 | 49, 50 | eqeltrrid 2258 | . . . . . . . 8 |
52 | 37, 51 | syl 14 | . . . . . . 7 |
53 | omelon 4593 | . . . . . . . 8 | |
54 | 53 | onelssi 4414 | . . . . . . 7 |
55 | 52, 54 | syl 14 | . . . . . 6 |
56 | elpm2r 6644 | . . . . . 6 | |
57 | 25, 26, 48, 55, 56 | syl22anc 1234 | . . . . 5 |
58 | 48 | fdmd 5354 | . . . . . 6 |
59 | 58, 52 | eqeltrd 2247 | . . . . 5 |
60 | 20, 57, 59 | elrabd 2888 | . . . 4 |
61 | ennnfonelemh.dceq | . . . . . 6 DECID | |
62 | 61 | adantr 274 | . . . . 5 DECID |
63 | 62, 42, 17 | ennnfonelemdc 12354 | . . . 4 DECID |
64 | 18, 60, 63 | ifcldadc 3555 | . . 3 |
65 | 2, 13, 16, 17, 64 | ovmpod 5980 | . 2 |
66 | 65, 64 | eqeltrd 2247 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 DECID wdc 829 wceq 1348 wcel 2141 wne 2340 wral 2448 wrex 2449 crab 2452 cvv 2730 cun 3119 wss 3121 c0 3414 cif 3526 csn 3583 cop 3586 cmpt 4050 word 4347 csuc 4350 com 4574 ccnv 4610 cdm 4611 cima 4614 wf 5194 wfo 5196 cfv 5198 (class class class)co 5853 cmpo 5855 freccfrec 6369 cpm 6627 cc0 7774 c1 7775 caddc 7777 cmin 8090 cn0 9135 cz 9212 cseq 10401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pm 6629 |
This theorem is referenced by: ennnfonelemh 12359 ennnfonelem0 12360 ennnfonelemp1 12361 ennnfonelemom 12363 |
Copyright terms: Public domain | W3C validator |