| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemg | Unicode version | ||
| Description: Lemma for ennnfone 12911. Closure for |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq |
|
| ennnfonelemh.f |
|
| ennnfonelemh.ne |
|
| ennnfonelemh.g |
|
| ennnfonelemh.n |
|
| ennnfonelemh.j |
|
| ennnfonelemh.h |
|
| Ref | Expression |
|---|---|
| ennnfonelemg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemh.g |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | simpr 110 |
. . . . . . 7
| |
| 4 | 3 | fveq2d 5603 |
. . . . . 6
|
| 5 | 3 | imaeq2d 5041 |
. . . . . 6
|
| 6 | 4, 5 | eleq12d 2278 |
. . . . 5
|
| 7 | simpl 109 |
. . . . 5
| |
| 8 | 7 | dmeqd 4899 |
. . . . . . . 8
|
| 9 | 8, 4 | opeq12d 3841 |
. . . . . . 7
|
| 10 | 9 | sneqd 3656 |
. . . . . 6
|
| 11 | 7, 10 | uneq12d 3336 |
. . . . 5
|
| 12 | 6, 7, 11 | ifbieq12d 3606 |
. . . 4
|
| 13 | 12 | adantl 277 |
. . 3
|
| 14 | ssrab2 3286 |
. . . 4
| |
| 15 | simprl 529 |
. . . 4
| |
| 16 | 14, 15 | sselid 3199 |
. . 3
|
| 17 | simprr 531 |
. . 3
| |
| 18 | simplrl 535 |
. . . 4
| |
| 19 | dmeq 4897 |
. . . . . 6
| |
| 20 | 19 | eleq1d 2276 |
. . . . 5
|
| 21 | omex 4659 |
. . . . . . . 8
| |
| 22 | ennnfonelemh.f |
. . . . . . . 8
| |
| 23 | focdmex 6223 |
. . . . . . . 8
| |
| 24 | 21, 22, 23 | mpsyl 65 |
. . . . . . 7
|
| 25 | 24 | ad2antrr 488 |
. . . . . 6
|
| 26 | 21 | a1i 9 |
. . . . . 6
|
| 27 | simplrl 535 |
. . . . . . . 8
| |
| 28 | elrabi 2933 |
. . . . . . . . . 10
| |
| 29 | elpmi 6777 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | syl 14 |
. . . . . . . . 9
|
| 31 | 30 | simpld 112 |
. . . . . . . 8
|
| 32 | 27, 31 | syl 14 |
. . . . . . 7
|
| 33 | dmeq 4897 |
. . . . . . . . . . 11
| |
| 34 | 33 | eleq1d 2276 |
. . . . . . . . . 10
|
| 35 | 34 | elrab 2936 |
. . . . . . . . 9
|
| 36 | 35 | simprbi 275 |
. . . . . . . 8
|
| 37 | 27, 36 | syl 14 |
. . . . . . 7
|
| 38 | nnord 4678 |
. . . . . . . . 9
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . 8
|
| 40 | ordirr 4608 |
. . . . . . . 8
| |
| 41 | 39, 40 | syl 14 |
. . . . . . 7
|
| 42 | 22 | adantr 276 |
. . . . . . . . . 10
|
| 43 | fof 5520 |
. . . . . . . . . 10
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . . 9
|
| 45 | 44, 17 | ffvelcdmd 5739 |
. . . . . . . 8
|
| 46 | 45 | adantr 276 |
. . . . . . 7
|
| 47 | fsnunf 5807 |
. . . . . . 7
| |
| 48 | 32, 37, 41, 46, 47 | syl121anc 1255 |
. . . . . 6
|
| 49 | df-suc 4436 |
. . . . . . . . 9
| |
| 50 | peano2 4661 |
. . . . . . . . 9
| |
| 51 | 49, 50 | eqeltrrid 2295 |
. . . . . . . 8
|
| 52 | 37, 51 | syl 14 |
. . . . . . 7
|
| 53 | elomssom 4671 |
. . . . . . 7
| |
| 54 | 52, 53 | syl 14 |
. . . . . 6
|
| 55 | elpm2r 6776 |
. . . . . 6
| |
| 56 | 25, 26, 48, 54, 55 | syl22anc 1251 |
. . . . 5
|
| 57 | 48 | fdmd 5452 |
. . . . . 6
|
| 58 | 57, 52 | eqeltrd 2284 |
. . . . 5
|
| 59 | 20, 56, 58 | elrabd 2938 |
. . . 4
|
| 60 | ennnfonelemh.dceq |
. . . . . 6
| |
| 61 | 60 | adantr 276 |
. . . . 5
|
| 62 | 61, 42, 17 | ennnfonelemdc 12885 |
. . . 4
|
| 63 | 18, 59, 62 | ifcldadc 3609 |
. . 3
|
| 64 | 2, 13, 16, 17, 63 | ovmpod 6096 |
. 2
|
| 65 | 64, 63 | eqeltrd 2284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pm 6761 |
| This theorem is referenced by: ennnfonelemh 12890 ennnfonelem0 12891 ennnfonelemp1 12892 ennnfonelemom 12894 |
| Copyright terms: Public domain | W3C validator |