ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab4f Unicode version

Theorem dfoprab4f 6161
Description: Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
dfoprab4f.x  |-  F/ x ph
dfoprab4f.y  |-  F/ y
ph
dfoprab4f.1  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dfoprab4f  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
Distinct variable groups:    x, w, y, z    w, A, x, y    w, B, x, y    ps, w
Allowed substitution hints:    ph( x, y, z, w)    ps( x, y, z)    A( z)    B( z)

Proof of Theorem dfoprab4f
Dummy variables  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1516 . . . . 5  |-  F/ x  w  =  <. t ,  u >.
2 dfoprab4f.x . . . . . 6  |-  F/ x ph
3 nfs1v 1927 . . . . . 6  |-  F/ x [ t  /  x ] [ u  /  y ] ps
42, 3nfbi 1577 . . . . 5  |-  F/ x
( ph  <->  [ t  /  x ] [ u  /  y ] ps )
51, 4nfim 1560 . . . 4  |-  F/ x
( w  =  <. t ,  u >.  ->  ( ph 
<->  [ t  /  x ] [ u  /  y ] ps ) )
6 opeq1 3758 . . . . . 6  |-  ( x  =  t  ->  <. x ,  u >.  =  <. t ,  u >. )
76eqeq2d 2177 . . . . 5  |-  ( x  =  t  ->  (
w  =  <. x ,  u >.  <->  w  =  <. t ,  u >. )
)
8 sbequ12 1759 . . . . . 6  |-  ( x  =  t  ->  ( [ u  /  y ] ps  <->  [ t  /  x ] [ u  /  y ] ps ) )
98bibi2d 231 . . . . 5  |-  ( x  =  t  ->  (
( ph  <->  [ u  /  y ] ps )  <->  ( ph  <->  [ t  /  x ] [ u  /  y ] ps ) ) )
107, 9imbi12d 233 . . . 4  |-  ( x  =  t  ->  (
( w  =  <. x ,  u >.  ->  ( ph 
<->  [ u  /  y ] ps ) )  <->  ( w  =  <. t ,  u >.  ->  ( ph  <->  [ t  /  x ] [ u  /  y ] ps ) ) ) )
11 nfv 1516 . . . . . 6  |-  F/ y  w  =  <. x ,  u >.
12 dfoprab4f.y . . . . . . 7  |-  F/ y
ph
13 nfs1v 1927 . . . . . . 7  |-  F/ y [ u  /  y ] ps
1412, 13nfbi 1577 . . . . . 6  |-  F/ y ( ph  <->  [ u  /  y ] ps )
1511, 14nfim 1560 . . . . 5  |-  F/ y ( w  =  <. x ,  u >.  ->  ( ph 
<->  [ u  /  y ] ps ) )
16 opeq2 3759 . . . . . . 7  |-  ( y  =  u  ->  <. x ,  y >.  =  <. x ,  u >. )
1716eqeq2d 2177 . . . . . 6  |-  ( y  =  u  ->  (
w  =  <. x ,  y >.  <->  w  =  <. x ,  u >. ) )
18 sbequ12 1759 . . . . . . 7  |-  ( y  =  u  ->  ( ps 
<->  [ u  /  y ] ps ) )
1918bibi2d 231 . . . . . 6  |-  ( y  =  u  ->  (
( ph  <->  ps )  <->  ( ph  <->  [ u  /  y ] ps ) ) )
2017, 19imbi12d 233 . . . . 5  |-  ( y  =  u  ->  (
( w  =  <. x ,  y >.  ->  ( ph 
<->  ps ) )  <->  ( w  =  <. x ,  u >.  ->  ( ph  <->  [ u  /  y ] ps ) ) ) )
21 dfoprab4f.1 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
2215, 20, 21chvar 1745 . . . 4  |-  ( w  =  <. x ,  u >.  ->  ( ph  <->  [ u  /  y ] ps ) )
235, 10, 22chvar 1745 . . 3  |-  ( w  =  <. t ,  u >.  ->  ( ph  <->  [ t  /  x ] [ u  /  y ] ps ) )
2423dfoprab4 6160 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. t ,  u >. ,  z >.  |  ( ( t  e.  A  /\  u  e.  B
)  /\  [ t  /  x ] [ u  /  y ] ps ) }
25 nfv 1516 . . 3  |-  F/ t ( ( x  e.  A  /\  y  e.  B )  /\  ps )
26 nfv 1516 . . 3  |-  F/ u
( ( x  e.  A  /\  y  e.  B )  /\  ps )
27 nfv 1516 . . . 4  |-  F/ x
( t  e.  A  /\  u  e.  B
)
2827, 3nfan 1553 . . 3  |-  F/ x
( ( t  e.  A  /\  u  e.  B )  /\  [
t  /  x ] [ u  /  y ] ps )
29 nfv 1516 . . . 4  |-  F/ y ( t  e.  A  /\  u  e.  B
)
3013nfsb 1934 . . . 4  |-  F/ y [ t  /  x ] [ u  /  y ] ps
3129, 30nfan 1553 . . 3  |-  F/ y ( ( t  e.  A  /\  u  e.  B )  /\  [
t  /  x ] [ u  /  y ] ps )
32 eleq1 2229 . . . . 5  |-  ( x  =  t  ->  (
x  e.  A  <->  t  e.  A ) )
33 eleq1 2229 . . . . 5  |-  ( y  =  u  ->  (
y  e.  B  <->  u  e.  B ) )
3432, 33bi2anan9 596 . . . 4  |-  ( ( x  =  t  /\  y  =  u )  ->  ( ( x  e.  A  /\  y  e.  B )  <->  ( t  e.  A  /\  u  e.  B ) ) )
3518, 8sylan9bbr 459 . . . 4  |-  ( ( x  =  t  /\  y  =  u )  ->  ( ps  <->  [ t  /  x ] [ u  /  y ] ps ) )
3634, 35anbi12d 465 . . 3  |-  ( ( x  =  t  /\  y  =  u )  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  ps ) 
<->  ( ( t  e.  A  /\  u  e.  B )  /\  [
t  /  x ] [ u  /  y ] ps ) ) )
3725, 26, 28, 31, 36cbvoprab12 5916 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) }  =  { <. <. t ,  u >. ,  z >.  |  ( ( t  e.  A  /\  u  e.  B )  /\  [
t  /  x ] [ u  /  y ] ps ) }
3824, 37eqtr4i 2189 1  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   F/wnf 1448   [wsb 1750    e. wcel 2136   <.cop 3579   {copab 4042    X. cxp 4602   {coprab 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-oprab 5846  df-1st 6108  df-2nd 6109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator