| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfoprab4f | Unicode version | ||
| Description: Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| dfoprab4f.x | 
 | 
| dfoprab4f.y | 
 | 
| dfoprab4f.1 | 
 | 
| Ref | Expression | 
|---|---|
| dfoprab4f | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | 
. . . . 5
 | |
| 2 | dfoprab4f.x | 
. . . . . 6
 | |
| 3 | nfs1v 1958 | 
. . . . . 6
 | |
| 4 | 2, 3 | nfbi 1603 | 
. . . . 5
 | 
| 5 | 1, 4 | nfim 1586 | 
. . . 4
 | 
| 6 | opeq1 3808 | 
. . . . . 6
 | |
| 7 | 6 | eqeq2d 2208 | 
. . . . 5
 | 
| 8 | sbequ12 1785 | 
. . . . . 6
 | |
| 9 | 8 | bibi2d 232 | 
. . . . 5
 | 
| 10 | 7, 9 | imbi12d 234 | 
. . . 4
 | 
| 11 | nfv 1542 | 
. . . . . 6
 | |
| 12 | dfoprab4f.y | 
. . . . . . 7
 | |
| 13 | nfs1v 1958 | 
. . . . . . 7
 | |
| 14 | 12, 13 | nfbi 1603 | 
. . . . . 6
 | 
| 15 | 11, 14 | nfim 1586 | 
. . . . 5
 | 
| 16 | opeq2 3809 | 
. . . . . . 7
 | |
| 17 | 16 | eqeq2d 2208 | 
. . . . . 6
 | 
| 18 | sbequ12 1785 | 
. . . . . . 7
 | |
| 19 | 18 | bibi2d 232 | 
. . . . . 6
 | 
| 20 | 17, 19 | imbi12d 234 | 
. . . . 5
 | 
| 21 | dfoprab4f.1 | 
. . . . 5
 | |
| 22 | 15, 20, 21 | chvar 1771 | 
. . . 4
 | 
| 23 | 5, 10, 22 | chvar 1771 | 
. . 3
 | 
| 24 | 23 | dfoprab4 6250 | 
. 2
 | 
| 25 | nfv 1542 | 
. . 3
 | |
| 26 | nfv 1542 | 
. . 3
 | |
| 27 | nfv 1542 | 
. . . 4
 | |
| 28 | 27, 3 | nfan 1579 | 
. . 3
 | 
| 29 | nfv 1542 | 
. . . 4
 | |
| 30 | 13 | nfsb 1965 | 
. . . 4
 | 
| 31 | 29, 30 | nfan 1579 | 
. . 3
 | 
| 32 | eleq1 2259 | 
. . . . 5
 | |
| 33 | eleq1 2259 | 
. . . . 5
 | |
| 34 | 32, 33 | bi2anan9 606 | 
. . . 4
 | 
| 35 | 18, 8 | sylan9bbr 463 | 
. . . 4
 | 
| 36 | 34, 35 | anbi12d 473 | 
. . 3
 | 
| 37 | 25, 26, 28, 31, 36 | cbvoprab12 5996 | 
. 2
 | 
| 38 | 24, 37 | eqtr4i 2220 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 df-oprab 5926 df-1st 6198 df-2nd 6199 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |