Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfoprab4f | Unicode version |
Description: Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfoprab4f.x | |
dfoprab4f.y | |
dfoprab4f.1 |
Ref | Expression |
---|---|
dfoprab4f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . . . . 5 | |
2 | dfoprab4f.x | . . . . . 6 | |
3 | nfs1v 1932 | . . . . . 6 | |
4 | 2, 3 | nfbi 1582 | . . . . 5 |
5 | 1, 4 | nfim 1565 | . . . 4 |
6 | opeq1 3765 | . . . . . 6 | |
7 | 6 | eqeq2d 2182 | . . . . 5 |
8 | sbequ12 1764 | . . . . . 6 | |
9 | 8 | bibi2d 231 | . . . . 5 |
10 | 7, 9 | imbi12d 233 | . . . 4 |
11 | nfv 1521 | . . . . . 6 | |
12 | dfoprab4f.y | . . . . . . 7 | |
13 | nfs1v 1932 | . . . . . . 7 | |
14 | 12, 13 | nfbi 1582 | . . . . . 6 |
15 | 11, 14 | nfim 1565 | . . . . 5 |
16 | opeq2 3766 | . . . . . . 7 | |
17 | 16 | eqeq2d 2182 | . . . . . 6 |
18 | sbequ12 1764 | . . . . . . 7 | |
19 | 18 | bibi2d 231 | . . . . . 6 |
20 | 17, 19 | imbi12d 233 | . . . . 5 |
21 | dfoprab4f.1 | . . . . 5 | |
22 | 15, 20, 21 | chvar 1750 | . . . 4 |
23 | 5, 10, 22 | chvar 1750 | . . 3 |
24 | 23 | dfoprab4 6171 | . 2 |
25 | nfv 1521 | . . 3 | |
26 | nfv 1521 | . . 3 | |
27 | nfv 1521 | . . . 4 | |
28 | 27, 3 | nfan 1558 | . . 3 |
29 | nfv 1521 | . . . 4 | |
30 | 13 | nfsb 1939 | . . . 4 |
31 | 29, 30 | nfan 1558 | . . 3 |
32 | eleq1 2233 | . . . . 5 | |
33 | eleq1 2233 | . . . . 5 | |
34 | 32, 33 | bi2anan9 601 | . . . 4 |
35 | 18, 8 | sylan9bbr 460 | . . . 4 |
36 | 34, 35 | anbi12d 470 | . . 3 |
37 | 25, 26, 28, 31, 36 | cbvoprab12 5927 | . 2 |
38 | 24, 37 | eqtr4i 2194 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wnf 1453 wsb 1755 wcel 2141 cop 3586 copab 4049 cxp 4609 coprab 5854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 df-oprab 5857 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |