ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfi Unicode version

Theorem elfi 6960
Description: Specific properties of an element of  ( fi `  B ). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
elfi  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
Distinct variable groups:    x, A    x, B    x, V    x, W

Proof of Theorem elfi
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fival 6959 . . 3  |-  ( B  e.  W  ->  ( fi `  B )  =  { y  |  E. x  e.  ( ~P B  i^i  Fin ) y  =  |^| x }
)
21eleq2d 2245 . 2  |-  ( B  e.  W  ->  ( A  e.  ( fi `  B )  <->  A  e.  { y  |  E. x  e.  ( ~P B  i^i  Fin ) y  =  |^| x } ) )
3 eqeq1 2182 . . . 4  |-  ( y  =  A  ->  (
y  =  |^| x  <->  A  =  |^| x ) )
43rexbidv 2476 . . 3  |-  ( y  =  A  ->  ( E. x  e.  ( ~P B  i^i  Fin )
y  =  |^| x  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
54elabg 2881 . 2  |-  ( A  e.  V  ->  ( A  e.  { y  |  E. x  e.  ( ~P B  i^i  Fin ) y  =  |^| x }  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
62, 5sylan9bbr 463 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   {cab 2161   E.wrex 2454    i^i cin 3126   ~Pcpw 3572   |^|cint 3840   ` cfv 5208   Fincfn 6730   ficfi 6957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-er 6525  df-en 6731  df-fin 6733  df-fi 6958
This theorem is referenced by:  elfi2  6961  elfir  6962  fiss  6966
  Copyright terms: Public domain W3C validator