ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfi Unicode version

Theorem elfi 7032
Description: Specific properties of an element of  ( fi `  B ). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
elfi  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
Distinct variable groups:    x, A    x, B    x, V    x, W

Proof of Theorem elfi
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fival 7031 . . 3  |-  ( B  e.  W  ->  ( fi `  B )  =  { y  |  E. x  e.  ( ~P B  i^i  Fin ) y  =  |^| x }
)
21eleq2d 2263 . 2  |-  ( B  e.  W  ->  ( A  e.  ( fi `  B )  <->  A  e.  { y  |  E. x  e.  ( ~P B  i^i  Fin ) y  =  |^| x } ) )
3 eqeq1 2200 . . . 4  |-  ( y  =  A  ->  (
y  =  |^| x  <->  A  =  |^| x ) )
43rexbidv 2495 . . 3  |-  ( y  =  A  ->  ( E. x  e.  ( ~P B  i^i  Fin )
y  =  |^| x  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
54elabg 2907 . 2  |-  ( A  e.  V  ->  ( A  e.  { y  |  E. x  e.  ( ~P B  i^i  Fin ) y  =  |^| x }  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
62, 5sylan9bbr 463 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473    i^i cin 3153   ~Pcpw 3602   |^|cint 3871   ` cfv 5255   Fincfn 6796   ficfi 7029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-er 6589  df-en 6797  df-fin 6799  df-fi 7030
This theorem is referenced by:  elfi2  7033  elfir  7034  fiss  7038
  Copyright terms: Public domain W3C validator