ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmword Unicode version

Theorem nnmword 6542
Description: Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnmword  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  ( C  .o  A
)  C_  ( C  .o  B ) ) )

Proof of Theorem nnmword
StepHypRef Expression
1 iba 300 . . . 4  |-  ( (/)  e.  C  ->  ( B  e.  A  <->  ( B  e.  A  /\  (/)  e.  C
) ) )
2 nnmord 6541 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  om  /\  C  e.  om )  ->  (
( B  e.  A  /\  (/)  e.  C )  <-> 
( C  .o  B
)  e.  ( C  .o  A ) ) )
323com12 1209 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( B  e.  A  /\  (/)  e.  C )  <-> 
( C  .o  B
)  e.  ( C  .o  A ) ) )
41, 3sylan9bbr 463 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( B  e.  A  <->  ( C  .o  B )  e.  ( C  .o  A ) ) )
54notbid 668 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( -.  B  e.  A  <->  -.  ( C  .o  B )  e.  ( C  .o  A ) ) )
6 simpl1 1002 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  A  e.  om )
7 simpl2 1003 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  B  e.  om )
8 nntri1 6520 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
96, 7, 8syl2anc 411 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  -.  B  e.  A
) )
10 simpl3 1004 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  C  e.  om )
11 nnmcl 6505 . . . 4  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( C  .o  A
)  e.  om )
1210, 6, 11syl2anc 411 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  om )
13 nnmcl 6505 . . . 4  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( C  .o  B
)  e.  om )
1410, 7, 13syl2anc 411 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  B )  e.  om )
15 nntri1 6520 . . 3  |-  ( ( ( C  .o  A
)  e.  om  /\  ( C  .o  B
)  e.  om )  ->  ( ( C  .o  A )  C_  ( C  .o  B )  <->  -.  ( C  .o  B )  e.  ( C  .o  A
) ) )
1612, 14, 15syl2anc 411 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  C_  ( C  .o  B
)  <->  -.  ( C  .o  B )  e.  ( C  .o  A ) ) )
175, 9, 163bitr4d 220 1  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  ( C  .o  A
)  C_  ( C  .o  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2160    C_ wss 3144   (/)c0 3437   omcom 4607  (class class class)co 5895    .o comu 6438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-oadd 6444  df-omul 6445
This theorem is referenced by:  nnmcan  6543  archnqq  7445
  Copyright terms: Public domain W3C validator