| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul0eqap | Unicode version | ||
| Description: If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| mul0eqap.a |
|
| mul0eqap.b |
|
| mul0eqap.ab |
|
| mul0eqap.0 |
|
| Ref | Expression |
|---|---|
| mul0eqap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul0eqap.ab |
. . . 4
| |
| 2 | mul0eqap.a |
. . . . 5
| |
| 3 | mul0eqap.b |
. . . . 5
| |
| 4 | 0cnd 8139 |
. . . . 5
| |
| 5 | apcotr 8754 |
. . . . 5
| |
| 6 | 2, 3, 4, 5 | syl3anc 1271 |
. . . 4
|
| 7 | 1, 6 | mpd 13 |
. . 3
|
| 8 | mul0eqap.0 |
. . . . . . 7
| |
| 9 | 8 | adantr 276 |
. . . . . 6
|
| 10 | 3 | adantr 276 |
. . . . . . 7
|
| 11 | 0cnd 8139 |
. . . . . . 7
| |
| 12 | 2, 3 | mulcld 8167 |
. . . . . . . 8
|
| 13 | 12 | adantr 276 |
. . . . . . 7
|
| 14 | ibar 301 |
. . . . . . . 8
| |
| 15 | 2, 3 | mulap0bd 8804 |
. . . . . . . 8
|
| 16 | 14, 15 | sylan9bbr 463 |
. . . . . . 7
|
| 17 | 10, 11, 13, 11, 16 | apcon4bid 8771 |
. . . . . 6
|
| 18 | 9, 17 | mpbird 167 |
. . . . 5
|
| 19 | 18 | ex 115 |
. . . 4
|
| 20 | 8 | adantr 276 |
. . . . . 6
|
| 21 | 2 | adantr 276 |
. . . . . . 7
|
| 22 | 0cnd 8139 |
. . . . . . 7
| |
| 23 | 12 | adantr 276 |
. . . . . . 7
|
| 24 | iba 300 |
. . . . . . . 8
| |
| 25 | 24, 15 | sylan9bbr 463 |
. . . . . . 7
|
| 26 | 21, 22, 23, 22, 25 | apcon4bid 8771 |
. . . . . 6
|
| 27 | 20, 26 | mpbird 167 |
. . . . 5
|
| 28 | 27 | ex 115 |
. . . 4
|
| 29 | 19, 28 | orim12d 791 |
. . 3
|
| 30 | 7, 29 | mpd 13 |
. 2
|
| 31 | 30 | orcomd 734 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |