ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul0eqap Unicode version

Theorem mul0eqap 8629
Description: If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.)
Hypotheses
Ref Expression
mul0eqap.a  |-  ( ph  ->  A  e.  CC )
mul0eqap.b  |-  ( ph  ->  B  e.  CC )
mul0eqap.ab  |-  ( ph  ->  A #  B )
mul0eqap.0  |-  ( ph  ->  ( A  x.  B
)  =  0 )
Assertion
Ref Expression
mul0eqap  |-  ( ph  ->  ( A  =  0  \/  B  =  0 ) )

Proof of Theorem mul0eqap
StepHypRef Expression
1 mul0eqap.ab . . . 4  |-  ( ph  ->  A #  B )
2 mul0eqap.a . . . . 5  |-  ( ph  ->  A  e.  CC )
3 mul0eqap.b . . . . 5  |-  ( ph  ->  B  e.  CC )
4 0cnd 7952 . . . . 5  |-  ( ph  ->  0  e.  CC )
5 apcotr 8566 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  0  e.  CC )  ->  ( A #  B  ->  ( A #  0  \/  B #  0 ) ) )
62, 3, 4, 5syl3anc 1238 . . . 4  |-  ( ph  ->  ( A #  B  -> 
( A #  0  \/  B #  0 ) ) )
71, 6mpd 13 . . 3  |-  ( ph  ->  ( A #  0  \/  B #  0 ) )
8 mul0eqap.0 . . . . . . 7  |-  ( ph  ->  ( A  x.  B
)  =  0 )
98adantr 276 . . . . . 6  |-  ( (
ph  /\  A #  0
)  ->  ( A  x.  B )  =  0 )
103adantr 276 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  B  e.  CC )
11 0cnd 7952 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  0  e.  CC )
122, 3mulcld 7980 . . . . . . . 8  |-  ( ph  ->  ( A  x.  B
)  e.  CC )
1312adantr 276 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  ( A  x.  B )  e.  CC )
14 ibar 301 . . . . . . . 8  |-  ( A #  0  ->  ( B #  0 
<->  ( A #  0  /\  B #  0 ) ) )
152, 3mulap0bd 8616 . . . . . . . 8  |-  ( ph  ->  ( ( A #  0  /\  B #  0 )  <-> 
( A  x.  B
) #  0 ) )
1614, 15sylan9bbr 463 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  ( B #  0 
<->  ( A  x.  B
) #  0 ) )
1710, 11, 13, 11, 16apcon4bid 8583 . . . . . 6  |-  ( (
ph  /\  A #  0
)  ->  ( B  =  0  <->  ( A  x.  B )  =  0 ) )
189, 17mpbird 167 . . . . 5  |-  ( (
ph  /\  A #  0
)  ->  B  = 
0 )
1918ex 115 . . . 4  |-  ( ph  ->  ( A #  0  ->  B  =  0 ) )
208adantr 276 . . . . . 6  |-  ( (
ph  /\  B #  0
)  ->  ( A  x.  B )  =  0 )
212adantr 276 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  A  e.  CC )
22 0cnd 7952 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  0  e.  CC )
2312adantr 276 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  ( A  x.  B )  e.  CC )
24 iba 300 . . . . . . . 8  |-  ( B #  0  ->  ( A #  0 
<->  ( A #  0  /\  B #  0 ) ) )
2524, 15sylan9bbr 463 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  ( A #  0 
<->  ( A  x.  B
) #  0 ) )
2621, 22, 23, 22, 25apcon4bid 8583 . . . . . 6  |-  ( (
ph  /\  B #  0
)  ->  ( A  =  0  <->  ( A  x.  B )  =  0 ) )
2720, 26mpbird 167 . . . . 5  |-  ( (
ph  /\  B #  0
)  ->  A  = 
0 )
2827ex 115 . . . 4  |-  ( ph  ->  ( B #  0  ->  A  =  0 ) )
2919, 28orim12d 786 . . 3  |-  ( ph  ->  ( ( A #  0  \/  B #  0 )  ->  ( B  =  0  \/  A  =  0 ) ) )
307, 29mpd 13 . 2  |-  ( ph  ->  ( B  =  0  \/  A  =  0 ) )
3130orcomd 729 1  |-  ( ph  ->  ( A  =  0  \/  B  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   CCcc 7811   0cc0 7813    x. cmul 7818   # cap 8540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator