ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul0eqap Unicode version

Theorem mul0eqap 8567
Description: If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.)
Hypotheses
Ref Expression
mul0eqap.a  |-  ( ph  ->  A  e.  CC )
mul0eqap.b  |-  ( ph  ->  B  e.  CC )
mul0eqap.ab  |-  ( ph  ->  A #  B )
mul0eqap.0  |-  ( ph  ->  ( A  x.  B
)  =  0 )
Assertion
Ref Expression
mul0eqap  |-  ( ph  ->  ( A  =  0  \/  B  =  0 ) )

Proof of Theorem mul0eqap
StepHypRef Expression
1 mul0eqap.ab . . . 4  |-  ( ph  ->  A #  B )
2 mul0eqap.a . . . . 5  |-  ( ph  ->  A  e.  CC )
3 mul0eqap.b . . . . 5  |-  ( ph  ->  B  e.  CC )
4 0cnd 7892 . . . . 5  |-  ( ph  ->  0  e.  CC )
5 apcotr 8505 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  0  e.  CC )  ->  ( A #  B  ->  ( A #  0  \/  B #  0 ) ) )
62, 3, 4, 5syl3anc 1228 . . . 4  |-  ( ph  ->  ( A #  B  -> 
( A #  0  \/  B #  0 ) ) )
71, 6mpd 13 . . 3  |-  ( ph  ->  ( A #  0  \/  B #  0 ) )
8 mul0eqap.0 . . . . . . 7  |-  ( ph  ->  ( A  x.  B
)  =  0 )
98adantr 274 . . . . . 6  |-  ( (
ph  /\  A #  0
)  ->  ( A  x.  B )  =  0 )
103adantr 274 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  B  e.  CC )
11 0cnd 7892 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  0  e.  CC )
122, 3mulcld 7919 . . . . . . . 8  |-  ( ph  ->  ( A  x.  B
)  e.  CC )
1312adantr 274 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  ( A  x.  B )  e.  CC )
14 ibar 299 . . . . . . . 8  |-  ( A #  0  ->  ( B #  0 
<->  ( A #  0  /\  B #  0 ) ) )
152, 3mulap0bd 8554 . . . . . . . 8  |-  ( ph  ->  ( ( A #  0  /\  B #  0 )  <-> 
( A  x.  B
) #  0 ) )
1614, 15sylan9bbr 459 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  ( B #  0 
<->  ( A  x.  B
) #  0 ) )
1710, 11, 13, 11, 16apcon4bid 8522 . . . . . 6  |-  ( (
ph  /\  A #  0
)  ->  ( B  =  0  <->  ( A  x.  B )  =  0 ) )
189, 17mpbird 166 . . . . 5  |-  ( (
ph  /\  A #  0
)  ->  B  = 
0 )
1918ex 114 . . . 4  |-  ( ph  ->  ( A #  0  ->  B  =  0 ) )
208adantr 274 . . . . . 6  |-  ( (
ph  /\  B #  0
)  ->  ( A  x.  B )  =  0 )
212adantr 274 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  A  e.  CC )
22 0cnd 7892 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  0  e.  CC )
2312adantr 274 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  ( A  x.  B )  e.  CC )
24 iba 298 . . . . . . . 8  |-  ( B #  0  ->  ( A #  0 
<->  ( A #  0  /\  B #  0 ) ) )
2524, 15sylan9bbr 459 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  ( A #  0 
<->  ( A  x.  B
) #  0 ) )
2621, 22, 23, 22, 25apcon4bid 8522 . . . . . 6  |-  ( (
ph  /\  B #  0
)  ->  ( A  =  0  <->  ( A  x.  B )  =  0 ) )
2720, 26mpbird 166 . . . . 5  |-  ( (
ph  /\  B #  0
)  ->  A  = 
0 )
2827ex 114 . . . 4  |-  ( ph  ->  ( B #  0  ->  A  =  0 ) )
2919, 28orim12d 776 . . 3  |-  ( ph  ->  ( ( A #  0  \/  B #  0 )  ->  ( B  =  0  \/  A  =  0 ) ) )
307, 29mpd 13 . 2  |-  ( ph  ->  ( B  =  0  \/  A  =  0 ) )
3130orcomd 719 1  |-  ( ph  ->  ( A  =  0  \/  B  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   0cc0 7753    x. cmul 7758   # cap 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator