ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul0eqap Unicode version

Theorem mul0eqap 8714
Description: If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.)
Hypotheses
Ref Expression
mul0eqap.a  |-  ( ph  ->  A  e.  CC )
mul0eqap.b  |-  ( ph  ->  B  e.  CC )
mul0eqap.ab  |-  ( ph  ->  A #  B )
mul0eqap.0  |-  ( ph  ->  ( A  x.  B
)  =  0 )
Assertion
Ref Expression
mul0eqap  |-  ( ph  ->  ( A  =  0  \/  B  =  0 ) )

Proof of Theorem mul0eqap
StepHypRef Expression
1 mul0eqap.ab . . . 4  |-  ( ph  ->  A #  B )
2 mul0eqap.a . . . . 5  |-  ( ph  ->  A  e.  CC )
3 mul0eqap.b . . . . 5  |-  ( ph  ->  B  e.  CC )
4 0cnd 8036 . . . . 5  |-  ( ph  ->  0  e.  CC )
5 apcotr 8651 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  0  e.  CC )  ->  ( A #  B  ->  ( A #  0  \/  B #  0 ) ) )
62, 3, 4, 5syl3anc 1249 . . . 4  |-  ( ph  ->  ( A #  B  -> 
( A #  0  \/  B #  0 ) ) )
71, 6mpd 13 . . 3  |-  ( ph  ->  ( A #  0  \/  B #  0 ) )
8 mul0eqap.0 . . . . . . 7  |-  ( ph  ->  ( A  x.  B
)  =  0 )
98adantr 276 . . . . . 6  |-  ( (
ph  /\  A #  0
)  ->  ( A  x.  B )  =  0 )
103adantr 276 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  B  e.  CC )
11 0cnd 8036 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  0  e.  CC )
122, 3mulcld 8064 . . . . . . . 8  |-  ( ph  ->  ( A  x.  B
)  e.  CC )
1312adantr 276 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  ( A  x.  B )  e.  CC )
14 ibar 301 . . . . . . . 8  |-  ( A #  0  ->  ( B #  0 
<->  ( A #  0  /\  B #  0 ) ) )
152, 3mulap0bd 8701 . . . . . . . 8  |-  ( ph  ->  ( ( A #  0  /\  B #  0 )  <-> 
( A  x.  B
) #  0 ) )
1614, 15sylan9bbr 463 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  ( B #  0 
<->  ( A  x.  B
) #  0 ) )
1710, 11, 13, 11, 16apcon4bid 8668 . . . . . 6  |-  ( (
ph  /\  A #  0
)  ->  ( B  =  0  <->  ( A  x.  B )  =  0 ) )
189, 17mpbird 167 . . . . 5  |-  ( (
ph  /\  A #  0
)  ->  B  = 
0 )
1918ex 115 . . . 4  |-  ( ph  ->  ( A #  0  ->  B  =  0 ) )
208adantr 276 . . . . . 6  |-  ( (
ph  /\  B #  0
)  ->  ( A  x.  B )  =  0 )
212adantr 276 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  A  e.  CC )
22 0cnd 8036 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  0  e.  CC )
2312adantr 276 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  ( A  x.  B )  e.  CC )
24 iba 300 . . . . . . . 8  |-  ( B #  0  ->  ( A #  0 
<->  ( A #  0  /\  B #  0 ) ) )
2524, 15sylan9bbr 463 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  ( A #  0 
<->  ( A  x.  B
) #  0 ) )
2621, 22, 23, 22, 25apcon4bid 8668 . . . . . 6  |-  ( (
ph  /\  B #  0
)  ->  ( A  =  0  <->  ( A  x.  B )  =  0 ) )
2720, 26mpbird 167 . . . . 5  |-  ( (
ph  /\  B #  0
)  ->  A  = 
0 )
2827ex 115 . . . 4  |-  ( ph  ->  ( B #  0  ->  A  =  0 ) )
2919, 28orim12d 787 . . 3  |-  ( ph  ->  ( ( A #  0  \/  B #  0 )  ->  ( B  =  0  \/  A  =  0 ) ) )
307, 29mpd 13 . 2  |-  ( ph  ->  ( B  =  0  \/  A  =  0 ) )
3130orcomd 730 1  |-  ( ph  ->  ( A  =  0  \/  B  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   CCcc 7894   0cc0 7896    x. cmul 7901   # cap 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator