ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul0eqap Unicode version

Theorem mul0eqap 8743
Description: If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.)
Hypotheses
Ref Expression
mul0eqap.a  |-  ( ph  ->  A  e.  CC )
mul0eqap.b  |-  ( ph  ->  B  e.  CC )
mul0eqap.ab  |-  ( ph  ->  A #  B )
mul0eqap.0  |-  ( ph  ->  ( A  x.  B
)  =  0 )
Assertion
Ref Expression
mul0eqap  |-  ( ph  ->  ( A  =  0  \/  B  =  0 ) )

Proof of Theorem mul0eqap
StepHypRef Expression
1 mul0eqap.ab . . . 4  |-  ( ph  ->  A #  B )
2 mul0eqap.a . . . . 5  |-  ( ph  ->  A  e.  CC )
3 mul0eqap.b . . . . 5  |-  ( ph  ->  B  e.  CC )
4 0cnd 8065 . . . . 5  |-  ( ph  ->  0  e.  CC )
5 apcotr 8680 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  0  e.  CC )  ->  ( A #  B  ->  ( A #  0  \/  B #  0 ) ) )
62, 3, 4, 5syl3anc 1250 . . . 4  |-  ( ph  ->  ( A #  B  -> 
( A #  0  \/  B #  0 ) ) )
71, 6mpd 13 . . 3  |-  ( ph  ->  ( A #  0  \/  B #  0 ) )
8 mul0eqap.0 . . . . . . 7  |-  ( ph  ->  ( A  x.  B
)  =  0 )
98adantr 276 . . . . . 6  |-  ( (
ph  /\  A #  0
)  ->  ( A  x.  B )  =  0 )
103adantr 276 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  B  e.  CC )
11 0cnd 8065 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  0  e.  CC )
122, 3mulcld 8093 . . . . . . . 8  |-  ( ph  ->  ( A  x.  B
)  e.  CC )
1312adantr 276 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  ( A  x.  B )  e.  CC )
14 ibar 301 . . . . . . . 8  |-  ( A #  0  ->  ( B #  0 
<->  ( A #  0  /\  B #  0 ) ) )
152, 3mulap0bd 8730 . . . . . . . 8  |-  ( ph  ->  ( ( A #  0  /\  B #  0 )  <-> 
( A  x.  B
) #  0 ) )
1614, 15sylan9bbr 463 . . . . . . 7  |-  ( (
ph  /\  A #  0
)  ->  ( B #  0 
<->  ( A  x.  B
) #  0 ) )
1710, 11, 13, 11, 16apcon4bid 8697 . . . . . 6  |-  ( (
ph  /\  A #  0
)  ->  ( B  =  0  <->  ( A  x.  B )  =  0 ) )
189, 17mpbird 167 . . . . 5  |-  ( (
ph  /\  A #  0
)  ->  B  = 
0 )
1918ex 115 . . . 4  |-  ( ph  ->  ( A #  0  ->  B  =  0 ) )
208adantr 276 . . . . . 6  |-  ( (
ph  /\  B #  0
)  ->  ( A  x.  B )  =  0 )
212adantr 276 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  A  e.  CC )
22 0cnd 8065 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  0  e.  CC )
2312adantr 276 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  ( A  x.  B )  e.  CC )
24 iba 300 . . . . . . . 8  |-  ( B #  0  ->  ( A #  0 
<->  ( A #  0  /\  B #  0 ) ) )
2524, 15sylan9bbr 463 . . . . . . 7  |-  ( (
ph  /\  B #  0
)  ->  ( A #  0 
<->  ( A  x.  B
) #  0 ) )
2621, 22, 23, 22, 25apcon4bid 8697 . . . . . 6  |-  ( (
ph  /\  B #  0
)  ->  ( A  =  0  <->  ( A  x.  B )  =  0 ) )
2720, 26mpbird 167 . . . . 5  |-  ( (
ph  /\  B #  0
)  ->  A  = 
0 )
2827ex 115 . . . 4  |-  ( ph  ->  ( B #  0  ->  A  =  0 ) )
2919, 28orim12d 788 . . 3  |-  ( ph  ->  ( ( A #  0  \/  B #  0 )  ->  ( B  =  0  \/  A  =  0 ) ) )
307, 29mpd 13 . 2  |-  ( ph  ->  ( B  =  0  \/  A  =  0 ) )
3130orcomd 731 1  |-  ( ph  ->  ( A  =  0  \/  B  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   CCcc 7923   0cc0 7925    x. cmul 7930   # cap 8654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator