ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zmodid2 Unicode version

Theorem zmodid2 10125
Description: Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
zmodid2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  mod  N )  =  M  <->  M  e.  ( 0 ... ( N  -  1 ) ) ) )

Proof of Theorem zmodid2
StepHypRef Expression
1 zq 9418 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  QQ )
21adantr 274 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  QQ )
3 nnq 9425 . . . 4  |-  ( N  e.  NN  ->  N  e.  QQ )
43adantl 275 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  QQ )
5 nngt0 8745 . . . 4  |-  ( N  e.  NN  ->  0  <  N )
65adantl 275 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  0  <  N )
7 modqid2 10124 . . 3  |-  ( ( M  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( M  mod  N
)  =  M  <->  ( 0  <_  M  /\  M  <  N ) ) )
82, 4, 6, 7syl3anc 1216 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  mod  N )  =  M  <->  ( 0  <_  M  /\  M  <  N ) ) )
9 nnz 9073 . . . 4  |-  ( N  e.  NN  ->  N  e.  ZZ )
10 0z 9065 . . . . . 6  |-  0  e.  ZZ
11 elfzm11 9871 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ( 0 ... ( N  -  1 ) )  <-> 
( M  e.  ZZ  /\  0  <_  M  /\  M  <  N ) ) )
1210, 11mpan 420 . . . . 5  |-  ( N  e.  ZZ  ->  ( M  e.  ( 0 ... ( N  - 
1 ) )  <->  ( M  e.  ZZ  /\  0  <_  M  /\  M  <  N
) ) )
13 3anass 966 . . . . 5  |-  ( ( M  e.  ZZ  /\  0  <_  M  /\  M  <  N )  <->  ( M  e.  ZZ  /\  ( 0  <_  M  /\  M  <  N ) ) )
1412, 13syl6bb 195 . . . 4  |-  ( N  e.  ZZ  ->  ( M  e.  ( 0 ... ( N  - 
1 ) )  <->  ( M  e.  ZZ  /\  ( 0  <_  M  /\  M  <  N ) ) ) )
159, 14syl 14 . . 3  |-  ( N  e.  NN  ->  ( M  e.  ( 0 ... ( N  - 
1 ) )  <->  ( M  e.  ZZ  /\  ( 0  <_  M  /\  M  <  N ) ) ) )
16 ibar 299 . . . 4  |-  ( M  e.  ZZ  ->  (
( 0  <_  M  /\  M  <  N )  <-> 
( M  e.  ZZ  /\  ( 0  <_  M  /\  M  <  N ) ) ) )
1716bicomd 140 . . 3  |-  ( M  e.  ZZ  ->  (
( M  e.  ZZ  /\  ( 0  <_  M  /\  M  <  N ) )  <->  ( 0  <_  M  /\  M  <  N
) ) )
1815, 17sylan9bbr 458 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  e.  ( 0 ... ( N  -  1 ) )  <-> 
( 0  <_  M  /\  M  <  N ) ) )
198, 18bitr4d 190 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  mod  N )  =  M  <->  M  e.  ( 0 ... ( N  -  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   0cc0 7620   1c1 7621    < clt 7800    <_ cle 7801    - cmin 7933   NNcn 8720   ZZcz 9054   QQcq 9411   ...cfz 9790    mod cmo 10095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-q 9412  df-rp 9442  df-fz 9791  df-fl 10043  df-mod 10096
This theorem is referenced by:  zmodidfzo  10126
  Copyright terms: Public domain W3C validator