ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zmodid2 Unicode version

Theorem zmodid2 10409
Description: Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
zmodid2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  mod  N )  =  M  <->  M  e.  ( 0 ... ( N  -  1 ) ) ) )

Proof of Theorem zmodid2
StepHypRef Expression
1 zq 9677 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  QQ )
21adantr 276 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  QQ )
3 nnq 9684 . . . 4  |-  ( N  e.  NN  ->  N  e.  QQ )
43adantl 277 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  QQ )
5 nngt0 8993 . . . 4  |-  ( N  e.  NN  ->  0  <  N )
65adantl 277 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  0  <  N )
7 modqid2 10408 . . 3  |-  ( ( M  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( M  mod  N
)  =  M  <->  ( 0  <_  M  /\  M  <  N ) ) )
82, 4, 6, 7syl3anc 1249 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  mod  N )  =  M  <->  ( 0  <_  M  /\  M  <  N ) ) )
9 nnz 9322 . . . 4  |-  ( N  e.  NN  ->  N  e.  ZZ )
10 0z 9314 . . . . . 6  |-  0  e.  ZZ
11 elfzm11 10143 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ( 0 ... ( N  -  1 ) )  <-> 
( M  e.  ZZ  /\  0  <_  M  /\  M  <  N ) ) )
1210, 11mpan 424 . . . . 5  |-  ( N  e.  ZZ  ->  ( M  e.  ( 0 ... ( N  - 
1 ) )  <->  ( M  e.  ZZ  /\  0  <_  M  /\  M  <  N
) ) )
13 3anass 984 . . . . 5  |-  ( ( M  e.  ZZ  /\  0  <_  M  /\  M  <  N )  <->  ( M  e.  ZZ  /\  ( 0  <_  M  /\  M  <  N ) ) )
1412, 13bitrdi 196 . . . 4  |-  ( N  e.  ZZ  ->  ( M  e.  ( 0 ... ( N  - 
1 ) )  <->  ( M  e.  ZZ  /\  ( 0  <_  M  /\  M  <  N ) ) ) )
159, 14syl 14 . . 3  |-  ( N  e.  NN  ->  ( M  e.  ( 0 ... ( N  - 
1 ) )  <->  ( M  e.  ZZ  /\  ( 0  <_  M  /\  M  <  N ) ) ) )
16 ibar 301 . . . 4  |-  ( M  e.  ZZ  ->  (
( 0  <_  M  /\  M  <  N )  <-> 
( M  e.  ZZ  /\  ( 0  <_  M  /\  M  <  N ) ) ) )
1716bicomd 141 . . 3  |-  ( M  e.  ZZ  ->  (
( M  e.  ZZ  /\  ( 0  <_  M  /\  M  <  N ) )  <->  ( 0  <_  M  /\  M  <  N
) ) )
1815, 17sylan9bbr 463 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  e.  ( 0 ... ( N  -  1 ) )  <-> 
( 0  <_  M  /\  M  <  N ) ) )
198, 18bitr4d 191 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  mod  N )  =  M  <->  M  e.  ( 0 ... ( N  -  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   class class class wbr 4025  (class class class)co 5906   0cc0 7858   1c1 7859    < clt 8040    <_ cle 8041    - cmin 8176   NNcn 8968   ZZcz 9303   QQcq 9670   ...cfz 10060    mod cmo 10379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4143  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561  ax-cnex 7949  ax-resscn 7950  ax-1cn 7951  ax-1re 7952  ax-icn 7953  ax-addcl 7954  ax-addrcl 7955  ax-mulcl 7956  ax-mulrcl 7957  ax-addcom 7958  ax-mulcom 7959  ax-addass 7960  ax-mulass 7961  ax-distr 7962  ax-i2m1 7963  ax-0lt1 7964  ax-1rid 7965  ax-0id 7966  ax-rnegex 7967  ax-precex 7968  ax-cnre 7969  ax-pre-ltirr 7970  ax-pre-ltwlin 7971  ax-pre-lttrn 7972  ax-pre-apti 7973  ax-pre-ltadd 7974  ax-pre-mulgt0 7975  ax-pre-mulext 7976  ax-arch 7977
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2758  df-sbc 2982  df-csb 3077  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-int 3867  df-iun 3910  df-br 4026  df-opab 4087  df-mpt 4088  df-id 4318  df-po 4321  df-iso 4322  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-fv 5250  df-riota 5861  df-ov 5909  df-oprab 5910  df-mpo 5911  df-1st 6180  df-2nd 6181  df-pnf 8042  df-mnf 8043  df-xr 8044  df-ltxr 8045  df-le 8046  df-sub 8178  df-neg 8179  df-reap 8580  df-ap 8587  df-div 8678  df-inn 8969  df-n0 9227  df-z 9304  df-q 9671  df-rp 9706  df-fz 10061  df-fl 10325  df-mod 10380
This theorem is referenced by:  zmodidfzo  10410
  Copyright terms: Public domain W3C validator