ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuci Unicode version

Theorem elsuci 4494
Description: Membership in a successor. This one-way implication does not require that either  A or  B be sets. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci  |-  ( A  e.  suc  B  -> 
( A  e.  B  \/  A  =  B
) )

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 4462 . . . 4  |-  suc  B  =  ( B  u.  { B } )
21eleq2i 2296 . . 3  |-  ( A  e.  suc  B  <->  A  e.  ( B  u.  { B } ) )
3 elun 3345 . . 3  |-  ( A  e.  ( B  u.  { B } )  <->  ( A  e.  B  \/  A  e.  { B } ) )
42, 3bitri 184 . 2  |-  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  e.  { B } ) )
5 elsni 3684 . . 3  |-  ( A  e.  { B }  ->  A  =  B )
65orim2i 766 . 2  |-  ( ( A  e.  B  \/  A  e.  { B } )  ->  ( A  e.  B  \/  A  =  B )
)
74, 6sylbi 121 1  |-  ( A  e.  suc  B  -> 
( A  e.  B  \/  A  =  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713    = wceq 1395    e. wcel 2200    u. cun 3195   {csn 3666   suc csuc 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-suc 4462
This theorem is referenced by:  trsucss  4514  onsucelsucexmid  4622  ordsoexmid  4654  ordsuc  4655  ordpwsucexmid  4662  nnsucelsuc  6637  nntri3or  6639  nnmordi  6662  nnaordex  6674  phplem3  7015  nninfninc  7290  nnnninf2  7294  3nelsucpw1  7419  3nsssucpw1  7421
  Copyright terms: Public domain W3C validator