ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuci Unicode version

Theorem elsuci 4415
Description: Membership in a successor. This one-way implication does not require that either  A or  B be sets. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci  |-  ( A  e.  suc  B  -> 
( A  e.  B  \/  A  =  B
) )

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 4383 . . . 4  |-  suc  B  =  ( B  u.  { B } )
21eleq2i 2254 . . 3  |-  ( A  e.  suc  B  <->  A  e.  ( B  u.  { B } ) )
3 elun 3288 . . 3  |-  ( A  e.  ( B  u.  { B } )  <->  ( A  e.  B  \/  A  e.  { B } ) )
42, 3bitri 184 . 2  |-  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  e.  { B } ) )
5 elsni 3622 . . 3  |-  ( A  e.  { B }  ->  A  =  B )
65orim2i 762 . 2  |-  ( ( A  e.  B  \/  A  e.  { B } )  ->  ( A  e.  B  \/  A  =  B )
)
74, 6sylbi 121 1  |-  ( A  e.  suc  B  -> 
( A  e.  B  \/  A  =  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1363    e. wcel 2158    u. cun 3139   {csn 3604   suc csuc 4377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-sn 3610  df-suc 4383
This theorem is referenced by:  trsucss  4435  onsucelsucexmid  4541  ordsoexmid  4573  ordsuc  4574  ordpwsucexmid  4581  nnsucelsuc  6505  nntri3or  6507  nnmordi  6530  nnaordex  6542  phplem3  6867  nnnninf2  7138  3nelsucpw1  7246  3nsssucpw1  7248
  Copyright terms: Public domain W3C validator