ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuci Unicode version

Theorem elsuci 4451
Description: Membership in a successor. This one-way implication does not require that either  A or  B be sets. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci  |-  ( A  e.  suc  B  -> 
( A  e.  B  \/  A  =  B
) )

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 4419 . . . 4  |-  suc  B  =  ( B  u.  { B } )
21eleq2i 2272 . . 3  |-  ( A  e.  suc  B  <->  A  e.  ( B  u.  { B } ) )
3 elun 3314 . . 3  |-  ( A  e.  ( B  u.  { B } )  <->  ( A  e.  B  \/  A  e.  { B } ) )
42, 3bitri 184 . 2  |-  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  e.  { B } ) )
5 elsni 3651 . . 3  |-  ( A  e.  { B }  ->  A  =  B )
65orim2i 763 . 2  |-  ( ( A  e.  B  \/  A  e.  { B } )  ->  ( A  e.  B  \/  A  =  B )
)
74, 6sylbi 121 1  |-  ( A  e.  suc  B  -> 
( A  e.  B  \/  A  =  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2176    u. cun 3164   {csn 3633   suc csuc 4413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-suc 4419
This theorem is referenced by:  trsucss  4471  onsucelsucexmid  4579  ordsoexmid  4611  ordsuc  4612  ordpwsucexmid  4619  nnsucelsuc  6579  nntri3or  6581  nnmordi  6604  nnaordex  6616  phplem3  6953  nninfninc  7227  nnnninf2  7231  3nelsucpw1  7348  3nsssucpw1  7350
  Copyright terms: Public domain W3C validator