ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuci Unicode version

Theorem elsuci 4381
Description: Membership in a successor. This one-way implication does not require that either  A or  B be sets. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci  |-  ( A  e.  suc  B  -> 
( A  e.  B  \/  A  =  B
) )

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 4349 . . . 4  |-  suc  B  =  ( B  u.  { B } )
21eleq2i 2233 . . 3  |-  ( A  e.  suc  B  <->  A  e.  ( B  u.  { B } ) )
3 elun 3263 . . 3  |-  ( A  e.  ( B  u.  { B } )  <->  ( A  e.  B  \/  A  e.  { B } ) )
42, 3bitri 183 . 2  |-  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  e.  { B } ) )
5 elsni 3594 . . 3  |-  ( A  e.  { B }  ->  A  =  B )
65orim2i 751 . 2  |-  ( ( A  e.  B  \/  A  e.  { B } )  ->  ( A  e.  B  \/  A  =  B )
)
74, 6sylbi 120 1  |-  ( A  e.  suc  B  -> 
( A  e.  B  \/  A  =  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    = wceq 1343    e. wcel 2136    u. cun 3114   {csn 3576   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-suc 4349
This theorem is referenced by:  trsucss  4401  onsucelsucexmid  4507  ordsoexmid  4539  ordsuc  4540  ordpwsucexmid  4547  nnsucelsuc  6459  nntri3or  6461  nnmordi  6484  nnaordex  6495  phplem3  6820  nnnninf2  7091  3nelsucpw1  7190  3nsssucpw1  7192
  Copyright terms: Public domain W3C validator