ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuci Unicode version

Theorem elsuci 4434
Description: Membership in a successor. This one-way implication does not require that either  A or  B be sets. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci  |-  ( A  e.  suc  B  -> 
( A  e.  B  \/  A  =  B
) )

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 4402 . . . 4  |-  suc  B  =  ( B  u.  { B } )
21eleq2i 2260 . . 3  |-  ( A  e.  suc  B  <->  A  e.  ( B  u.  { B } ) )
3 elun 3300 . . 3  |-  ( A  e.  ( B  u.  { B } )  <->  ( A  e.  B  \/  A  e.  { B } ) )
42, 3bitri 184 . 2  |-  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  e.  { B } ) )
5 elsni 3636 . . 3  |-  ( A  e.  { B }  ->  A  =  B )
65orim2i 762 . 2  |-  ( ( A  e.  B  \/  A  e.  { B } )  ->  ( A  e.  B  \/  A  =  B )
)
74, 6sylbi 121 1  |-  ( A  e.  suc  B  -> 
( A  e.  B  \/  A  =  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1364    e. wcel 2164    u. cun 3151   {csn 3618   suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-suc 4402
This theorem is referenced by:  trsucss  4454  onsucelsucexmid  4562  ordsoexmid  4594  ordsuc  4595  ordpwsucexmid  4602  nnsucelsuc  6544  nntri3or  6546  nnmordi  6569  nnaordex  6581  phplem3  6910  nninfninc  7182  nnnninf2  7186  3nelsucpw1  7294  3nsssucpw1  7296
  Copyright terms: Public domain W3C validator