Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > trsucss | GIF version |
Description: A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.) |
Ref | Expression |
---|---|
trsucss | ⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuci 4378 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
2 | trss 4086 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
3 | eqimss 3194 | . . . 4 ⊢ (𝐵 = 𝐴 → 𝐵 ⊆ 𝐴) | |
4 | 3 | a1i 9 | . . 3 ⊢ (Tr 𝐴 → (𝐵 = 𝐴 → 𝐵 ⊆ 𝐴)) |
5 | 2, 4 | jaod 707 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → 𝐵 ⊆ 𝐴)) |
6 | 1, 5 | syl5 32 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 = wceq 1342 ∈ wcel 2135 ⊆ wss 3114 Tr wtr 4077 suc csuc 4340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-v 2726 df-un 3118 df-in 3120 df-ss 3127 df-sn 3579 df-uni 3787 df-tr 4078 df-suc 4346 |
This theorem is referenced by: onsucsssucr 4483 ordpwsucss 4541 nnnninfeq 7086 bj-el2oss1o 13548 nnsf 13778 |
Copyright terms: Public domain | W3C validator |