ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsucss GIF version

Theorem trsucss 4478
Description: A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
trsucss (Tr 𝐴 → (𝐵 ∈ suc 𝐴𝐵𝐴))

Proof of Theorem trsucss
StepHypRef Expression
1 elsuci 4458 . 2 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
2 trss 4159 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
3 eqimss 3251 . . . 4 (𝐵 = 𝐴𝐵𝐴)
43a1i 9 . . 3 (Tr 𝐴 → (𝐵 = 𝐴𝐵𝐴))
52, 4jaod 719 . 2 (Tr 𝐴 → ((𝐵𝐴𝐵 = 𝐴) → 𝐵𝐴))
61, 5syl5 32 1 (Tr 𝐴 → (𝐵 ∈ suc 𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710   = wceq 1373  wcel 2177  wss 3170  Tr wtr 4150  suc csuc 4420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-uni 3857  df-tr 4151  df-suc 4426
This theorem is referenced by:  onsucsssucr  4565  ordpwsucss  4623  nnnninfeq  7245  bj-el2oss1o  15849  nnsf  16083
  Copyright terms: Public domain W3C validator