ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsucss GIF version

Theorem trsucss 4401
Description: A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
trsucss (Tr 𝐴 → (𝐵 ∈ suc 𝐴𝐵𝐴))

Proof of Theorem trsucss
StepHypRef Expression
1 elsuci 4381 . 2 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
2 trss 4089 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
3 eqimss 3196 . . . 4 (𝐵 = 𝐴𝐵𝐴)
43a1i 9 . . 3 (Tr 𝐴 → (𝐵 = 𝐴𝐵𝐴))
52, 4jaod 707 . 2 (Tr 𝐴 → ((𝐵𝐴𝐵 = 𝐴) → 𝐵𝐴))
61, 5syl5 32 1 (Tr 𝐴 → (𝐵 ∈ suc 𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698   = wceq 1343  wcel 2136  wss 3116  Tr wtr 4080  suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-uni 3790  df-tr 4081  df-suc 4349
This theorem is referenced by:  onsucsssucr  4486  ordpwsucss  4544  nnnninfeq  7092  bj-el2oss1o  13655  nnsf  13885
  Copyright terms: Public domain W3C validator