ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsucss GIF version

Theorem trsucss 4408
Description: A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
trsucss (Tr 𝐴 → (𝐵 ∈ suc 𝐴𝐵𝐴))

Proof of Theorem trsucss
StepHypRef Expression
1 elsuci 4388 . 2 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
2 trss 4096 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
3 eqimss 3201 . . . 4 (𝐵 = 𝐴𝐵𝐴)
43a1i 9 . . 3 (Tr 𝐴 → (𝐵 = 𝐴𝐵𝐴))
52, 4jaod 712 . 2 (Tr 𝐴 → ((𝐵𝐴𝐵 = 𝐴) → 𝐵𝐴))
61, 5syl5 32 1 (Tr 𝐴 → (𝐵 ∈ suc 𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703   = wceq 1348  wcel 2141  wss 3121  Tr wtr 4087  suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-uni 3797  df-tr 4088  df-suc 4356
This theorem is referenced by:  onsucsssucr  4493  ordpwsucss  4551  nnnninfeq  7104  bj-el2oss1o  13809  nnsf  14038
  Copyright terms: Public domain W3C validator