ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsucss GIF version

Theorem trsucss 4458
Description: A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
trsucss (Tr 𝐴 → (𝐵 ∈ suc 𝐴𝐵𝐴))

Proof of Theorem trsucss
StepHypRef Expression
1 elsuci 4438 . 2 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
2 trss 4140 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
3 eqimss 3237 . . . 4 (𝐵 = 𝐴𝐵𝐴)
43a1i 9 . . 3 (Tr 𝐴 → (𝐵 = 𝐴𝐵𝐴))
52, 4jaod 718 . 2 (Tr 𝐴 → ((𝐵𝐴𝐵 = 𝐴) → 𝐵𝐴))
61, 5syl5 32 1 (Tr 𝐴 → (𝐵 ∈ suc 𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1364  wcel 2167  wss 3157  Tr wtr 4131  suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-uni 3840  df-tr 4132  df-suc 4406
This theorem is referenced by:  onsucsssucr  4545  ordpwsucss  4603  nnnninfeq  7194  bj-el2oss1o  15420  nnsf  15649
  Copyright terms: Public domain W3C validator