ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fntpg Unicode version

Theorem fntpg 5274
Description: Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
fntpg  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  Fn  { X ,  Y ,  Z }
)

Proof of Theorem fntpg
StepHypRef Expression
1 funtpg 5269 . 2  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } )
2 dmsnopg 5102 . . . . . . . . . 10  |-  ( A  e.  F  ->  dom  {
<. X ,  A >. }  =  { X }
)
323ad2ant1 1018 . . . . . . . . 9  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  dom  { <. X ,  A >. }  =  { X } )
4 dmsnopg 5102 . . . . . . . . . 10  |-  ( B  e.  G  ->  dom  {
<. Y ,  B >. }  =  { Y }
)
543ad2ant2 1019 . . . . . . . . 9  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  dom  { <. Y ,  B >. }  =  { Y } )
63, 5jca 306 . . . . . . . 8  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  ( dom  { <. X ,  A >. }  =  { X }  /\  dom  {
<. Y ,  B >. }  =  { Y }
) )
763ad2ant2 1019 . . . . . . 7  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. }  =  { X }  /\  dom  { <. Y ,  B >. }  =  { Y }
) )
8 uneq12 3286 . . . . . . 7  |-  ( ( dom  { <. X ,  A >. }  =  { X }  /\  dom  { <. Y ,  B >. }  =  { Y }
)  ->  ( dom  {
<. X ,  A >. }  u.  dom  { <. Y ,  B >. } )  =  ( { X }  u.  { Y } ) )
97, 8syl 14 . . . . . 6  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. }  u.  dom  {
<. Y ,  B >. } )  =  ( { X }  u.  { Y } ) )
10 df-pr 3601 . . . . . 6  |-  { X ,  Y }  =  ( { X }  u.  { Y } )
119, 10eqtr4di 2228 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. }  u.  dom  {
<. Y ,  B >. } )  =  { X ,  Y } )
12 df-pr 3601 . . . . . . . 8  |-  { <. X ,  A >. ,  <. Y ,  B >. }  =  ( { <. X ,  A >. }  u.  { <. Y ,  B >. } )
1312dmeqi 4830 . . . . . . 7  |-  dom  { <. X ,  A >. , 
<. Y ,  B >. }  =  dom  ( {
<. X ,  A >. }  u.  { <. Y ,  B >. } )
1413eqeq1i 2185 . . . . . 6  |-  ( dom 
{ <. X ,  A >. ,  <. Y ,  B >. }  =  { X ,  Y }  <->  dom  ( {
<. X ,  A >. }  u.  { <. Y ,  B >. } )  =  { X ,  Y } )
15 dmun 4836 . . . . . . 7  |-  dom  ( { <. X ,  A >. }  u.  { <. Y ,  B >. } )  =  ( dom  { <. X ,  A >. }  u.  dom  { <. Y ,  B >. } )
1615eqeq1i 2185 . . . . . 6  |-  ( dom  ( { <. X ,  A >. }  u.  { <. Y ,  B >. } )  =  { X ,  Y }  <->  ( dom  {
<. X ,  A >. }  u.  dom  { <. Y ,  B >. } )  =  { X ,  Y } )
1714, 16bitri 184 . . . . 5  |-  ( dom 
{ <. X ,  A >. ,  <. Y ,  B >. }  =  { X ,  Y }  <->  ( dom  {
<. X ,  A >. }  u.  dom  { <. Y ,  B >. } )  =  { X ,  Y } )
1811, 17sylibr 134 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  dom  { <. X ,  A >. ,  <. Y ,  B >. }  =  { X ,  Y } )
19 dmsnopg 5102 . . . . . 6  |-  ( C  e.  H  ->  dom  {
<. Z ,  C >. }  =  { Z }
)
20193ad2ant3 1020 . . . . 5  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  dom  { <. Z ,  C >. }  =  { Z } )
21203ad2ant2 1019 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  dom  { <. Z ,  C >. }  =  { Z } )
2218, 21uneq12d 3292 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. ,  <. Y ,  B >. }  u.  dom  {
<. Z ,  C >. } )  =  ( { X ,  Y }  u.  { Z } ) )
23 df-tp 3602 . . . . 5  |-  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  =  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } )
2423dmeqi 4830 . . . 4  |-  dom  { <. X ,  A >. , 
<. Y ,  B >. , 
<. Z ,  C >. }  =  dom  ( {
<. X ,  A >. , 
<. Y ,  B >. }  u.  { <. Z ,  C >. } )
25 dmun 4836 . . . 4  |-  dom  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } )  =  ( dom  { <. X ,  A >. , 
<. Y ,  B >. }  u.  dom  { <. Z ,  C >. } )
2624, 25eqtri 2198 . . 3  |-  dom  { <. X ,  A >. , 
<. Y ,  B >. , 
<. Z ,  C >. }  =  ( dom  { <. X ,  A >. , 
<. Y ,  B >. }  u.  dom  { <. Z ,  C >. } )
27 df-tp 3602 . . 3  |-  { X ,  Y ,  Z }  =  ( { X ,  Y }  u.  { Z } )
2822, 26, 273eqtr4g 2235 . 2  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  dom  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  =  { X ,  Y ,  Z }
)
29 df-fn 5221 . 2  |-  ( {
<. X ,  A >. , 
<. Y ,  B >. , 
<. Z ,  C >. }  Fn  { X ,  Y ,  Z }  <->  ( Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  /\  dom  {
<. X ,  A >. , 
<. Y ,  B >. , 
<. Z ,  C >. }  =  { X ,  Y ,  Z }
) )
301, 28, 29sylanbrc 417 1  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  Fn  { X ,  Y ,  Z }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347    u. cun 3129   {csn 3594   {cpr 3595   {ctp 3596   <.cop 3597   dom cdm 4628   Fun wfun 5212    Fn wfn 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-tp 3602  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-fun 5220  df-fn 5221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator