Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fntpg | Unicode version |
Description: Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.) |
Ref | Expression |
---|---|
fntpg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funtpg 5239 | . 2 | |
2 | dmsnopg 5075 | . . . . . . . . . 10 | |
3 | 2 | 3ad2ant1 1008 | . . . . . . . . 9 |
4 | dmsnopg 5075 | . . . . . . . . . 10 | |
5 | 4 | 3ad2ant2 1009 | . . . . . . . . 9 |
6 | 3, 5 | jca 304 | . . . . . . . 8 |
7 | 6 | 3ad2ant2 1009 | . . . . . . 7 |
8 | uneq12 3271 | . . . . . . 7 | |
9 | 7, 8 | syl 14 | . . . . . 6 |
10 | df-pr 3583 | . . . . . 6 | |
11 | 9, 10 | eqtr4di 2217 | . . . . 5 |
12 | df-pr 3583 | . . . . . . . 8 | |
13 | 12 | dmeqi 4805 | . . . . . . 7 |
14 | 13 | eqeq1i 2173 | . . . . . 6 |
15 | dmun 4811 | . . . . . . 7 | |
16 | 15 | eqeq1i 2173 | . . . . . 6 |
17 | 14, 16 | bitri 183 | . . . . 5 |
18 | 11, 17 | sylibr 133 | . . . 4 |
19 | dmsnopg 5075 | . . . . . 6 | |
20 | 19 | 3ad2ant3 1010 | . . . . 5 |
21 | 20 | 3ad2ant2 1009 | . . . 4 |
22 | 18, 21 | uneq12d 3277 | . . 3 |
23 | df-tp 3584 | . . . . 5 | |
24 | 23 | dmeqi 4805 | . . . 4 |
25 | dmun 4811 | . . . 4 | |
26 | 24, 25 | eqtri 2186 | . . 3 |
27 | df-tp 3584 | . . 3 | |
28 | 22, 26, 27 | 3eqtr4g 2224 | . 2 |
29 | df-fn 5191 | . 2 | |
30 | 1, 28, 29 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wne 2336 cun 3114 csn 3576 cpr 3577 ctp 3578 cop 3579 cdm 4604 wfun 5182 wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-tp 3584 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-fun 5190 df-fn 5191 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |