| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fntpg | Unicode version | ||
| Description: Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| fntpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funtpg 5309 |
. 2
| |
| 2 | dmsnopg 5141 |
. . . . . . . . . 10
| |
| 3 | 2 | 3ad2ant1 1020 |
. . . . . . . . 9
|
| 4 | dmsnopg 5141 |
. . . . . . . . . 10
| |
| 5 | 4 | 3ad2ant2 1021 |
. . . . . . . . 9
|
| 6 | 3, 5 | jca 306 |
. . . . . . . 8
|
| 7 | 6 | 3ad2ant2 1021 |
. . . . . . 7
|
| 8 | uneq12 3312 |
. . . . . . 7
| |
| 9 | 7, 8 | syl 14 |
. . . . . 6
|
| 10 | df-pr 3629 |
. . . . . 6
| |
| 11 | 9, 10 | eqtr4di 2247 |
. . . . 5
|
| 12 | df-pr 3629 |
. . . . . . . 8
| |
| 13 | 12 | dmeqi 4867 |
. . . . . . 7
|
| 14 | 13 | eqeq1i 2204 |
. . . . . 6
|
| 15 | dmun 4873 |
. . . . . . 7
| |
| 16 | 15 | eqeq1i 2204 |
. . . . . 6
|
| 17 | 14, 16 | bitri 184 |
. . . . 5
|
| 18 | 11, 17 | sylibr 134 |
. . . 4
|
| 19 | dmsnopg 5141 |
. . . . . 6
| |
| 20 | 19 | 3ad2ant3 1022 |
. . . . 5
|
| 21 | 20 | 3ad2ant2 1021 |
. . . 4
|
| 22 | 18, 21 | uneq12d 3318 |
. . 3
|
| 23 | df-tp 3630 |
. . . . 5
| |
| 24 | 23 | dmeqi 4867 |
. . . 4
|
| 25 | dmun 4873 |
. . . 4
| |
| 26 | 24, 25 | eqtri 2217 |
. . 3
|
| 27 | df-tp 3630 |
. . 3
| |
| 28 | 22, 26, 27 | 3eqtr4g 2254 |
. 2
|
| 29 | df-fn 5261 |
. 2
| |
| 30 | 1, 28, 29 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-fun 5260 df-fn 5261 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |