Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fntpg | Unicode version |
Description: Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.) |
Ref | Expression |
---|---|
fntpg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funtpg 5249 | . 2 | |
2 | dmsnopg 5082 | . . . . . . . . . 10 | |
3 | 2 | 3ad2ant1 1013 | . . . . . . . . 9 |
4 | dmsnopg 5082 | . . . . . . . . . 10 | |
5 | 4 | 3ad2ant2 1014 | . . . . . . . . 9 |
6 | 3, 5 | jca 304 | . . . . . . . 8 |
7 | 6 | 3ad2ant2 1014 | . . . . . . 7 |
8 | uneq12 3276 | . . . . . . 7 | |
9 | 7, 8 | syl 14 | . . . . . 6 |
10 | df-pr 3590 | . . . . . 6 | |
11 | 9, 10 | eqtr4di 2221 | . . . . 5 |
12 | df-pr 3590 | . . . . . . . 8 | |
13 | 12 | dmeqi 4812 | . . . . . . 7 |
14 | 13 | eqeq1i 2178 | . . . . . 6 |
15 | dmun 4818 | . . . . . . 7 | |
16 | 15 | eqeq1i 2178 | . . . . . 6 |
17 | 14, 16 | bitri 183 | . . . . 5 |
18 | 11, 17 | sylibr 133 | . . . 4 |
19 | dmsnopg 5082 | . . . . . 6 | |
20 | 19 | 3ad2ant3 1015 | . . . . 5 |
21 | 20 | 3ad2ant2 1014 | . . . 4 |
22 | 18, 21 | uneq12d 3282 | . . 3 |
23 | df-tp 3591 | . . . . 5 | |
24 | 23 | dmeqi 4812 | . . . 4 |
25 | dmun 4818 | . . . 4 | |
26 | 24, 25 | eqtri 2191 | . . 3 |
27 | df-tp 3591 | . . 3 | |
28 | 22, 26, 27 | 3eqtr4g 2228 | . 2 |
29 | df-fn 5201 | . 2 | |
30 | 1, 28, 29 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wne 2340 cun 3119 csn 3583 cpr 3584 ctp 3585 cop 3586 cdm 4611 wfun 5192 wfn 5193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-tp 3591 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-fun 5200 df-fn 5201 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |