ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq12 GIF version

Theorem uneq12 3256
Description: Equality theorem for union of two classes. (Contributed by NM, 29-Mar-1998.)
Assertion
Ref Expression
uneq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem uneq12
StepHypRef Expression
1 uneq1 3254 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
2 uneq2 3255 . 2 (𝐶 = 𝐷 → (𝐵𝐶) = (𝐵𝐷))
31, 2sylan9eq 2210 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  cun 3100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106
This theorem is referenced by:  uneq12i  3259  uneq12d  3262  un00  3440  opthprc  4634  dmpropg  5055  unixpm  5118  fntpg  5223  fnun  5273  resasplitss  5346  pm54.43  7108
  Copyright terms: Public domain W3C validator