ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnuni Unicode version

Theorem rnuni 5042
Description: The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rnuni  |-  ran  U. A  =  U_ x  e.  A  ran  x
Distinct variable group:    x, A

Proof of Theorem rnuni
StepHypRef Expression
1 uniiun 3942 . . 3  |-  U. A  =  U_ x  e.  A  x
21rneqi 4857 . 2  |-  ran  U. A  =  ran  U_ x  e.  A  x
3 rniun 5041 . 2  |-  ran  U_ x  e.  A  x  =  U_ x  e.  A  ran  x
42, 3eqtri 2198 1  |-  ran  U. A  =  U_ x  e.  A  ran  x
Colors of variables: wff set class
Syntax hints:    = wceq 1353   U.cuni 3811   U_ciun 3888   ran crn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-cnv 4636  df-dm 4638  df-rn 4639
This theorem is referenced by:  ennnfonelemf1  12421
  Copyright terms: Public domain W3C validator