ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnuni Unicode version

Theorem rnuni 5103
Description: The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rnuni  |-  ran  U. A  =  U_ x  e.  A  ran  x
Distinct variable group:    x, A

Proof of Theorem rnuni
StepHypRef Expression
1 uniiun 3987 . . 3  |-  U. A  =  U_ x  e.  A  x
21rneqi 4915 . 2  |-  ran  U. A  =  ran  U_ x  e.  A  x
3 rniun 5102 . 2  |-  ran  U_ x  e.  A  x  =  U_ x  e.  A  ran  x
42, 3eqtri 2227 1  |-  ran  U. A  =  U_ x  e.  A  ran  x
Colors of variables: wff set class
Syntax hints:    = wceq 1373   U.cuni 3856   U_ciun 3933   ran crn 4684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-cnv 4691  df-dm 4693  df-rn 4694
This theorem is referenced by:  ennnfonelemf1  12864
  Copyright terms: Public domain W3C validator