ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnuni Unicode version

Theorem rnuni 5032
Description: The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rnuni  |-  ran  U. A  =  U_ x  e.  A  ran  x
Distinct variable group:    x, A

Proof of Theorem rnuni
StepHypRef Expression
1 uniiun 3935 . . 3  |-  U. A  =  U_ x  e.  A  x
21rneqi 4848 . 2  |-  ran  U. A  =  ran  U_ x  e.  A  x
3 rniun 5031 . 2  |-  ran  U_ x  e.  A  x  =  U_ x  e.  A  ran  x
42, 3eqtri 2196 1  |-  ran  U. A  =  U_ x  e.  A  ran  x
Colors of variables: wff set class
Syntax hints:    = wceq 1353   U.cuni 3805   U_ciun 3882   ran crn 4621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-cnv 4628  df-dm 4630  df-rn 4631
This theorem is referenced by:  ennnfonelemf1  12384
  Copyright terms: Public domain W3C validator