ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0mulcl Unicode version

Theorem un0mulcl 9035
Description: If  S is closed under multiplication, then so is  S  u.  { 0 }. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1  |-  ( ph  ->  S  C_  CC )
un0addcl.2  |-  T  =  ( S  u.  {
0 } )
un0mulcl.3  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  S )
Assertion
Ref Expression
un0mulcl  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  x.  N
)  e.  T )

Proof of Theorem un0mulcl
StepHypRef Expression
1 un0addcl.2 . . . . 5  |-  T  =  ( S  u.  {
0 } )
21eleq2i 2207 . . . 4  |-  ( N  e.  T  <->  N  e.  ( S  u.  { 0 } ) )
3 elun 3222 . . . 4  |-  ( N  e.  ( S  u.  { 0 } )  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
42, 3bitri 183 . . 3  |-  ( N  e.  T  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
51eleq2i 2207 . . . . . 6  |-  ( M  e.  T  <->  M  e.  ( S  u.  { 0 } ) )
6 elun 3222 . . . . . 6  |-  ( M  e.  ( S  u.  { 0 } )  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
75, 6bitri 183 . . . . 5  |-  ( M  e.  T  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
8 ssun1 3244 . . . . . . . . 9  |-  S  C_  ( S  u.  { 0 } )
98, 1sseqtrri 3137 . . . . . . . 8  |-  S  C_  T
10 un0mulcl.3 . . . . . . . 8  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  S )
119, 10sseldi 3100 . . . . . . 7  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  T )
1211expr 373 . . . . . 6  |-  ( (
ph  /\  M  e.  S )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
13 un0addcl.1 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  CC )
1413sselda 3102 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  S )  ->  N  e.  CC )
1514mul02d 8178 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  S )  ->  (
0  x.  N )  =  0 )
16 ssun2 3245 . . . . . . . . . . 11  |-  { 0 }  C_  ( S  u.  { 0 } )
1716, 1sseqtrri 3137 . . . . . . . . . 10  |-  { 0 }  C_  T
18 c0ex 7784 . . . . . . . . . . 11  |-  0  e.  _V
1918snss 3657 . . . . . . . . . 10  |-  ( 0  e.  T  <->  { 0 }  C_  T )
2017, 19mpbir 145 . . . . . . . . 9  |-  0  e.  T
2115, 20eqeltrdi 2231 . . . . . . . 8  |-  ( (
ph  /\  N  e.  S )  ->  (
0  x.  N )  e.  T )
22 elsni 3550 . . . . . . . . . 10  |-  ( M  e.  { 0 }  ->  M  =  0 )
2322oveq1d 5797 . . . . . . . . 9  |-  ( M  e.  { 0 }  ->  ( M  x.  N )  =  ( 0  x.  N ) )
2423eleq1d 2209 . . . . . . . 8  |-  ( M  e.  { 0 }  ->  ( ( M  x.  N )  e.  T  <->  ( 0  x.  N )  e.  T
) )
2521, 24syl5ibrcom 156 . . . . . . 7  |-  ( (
ph  /\  N  e.  S )  ->  ( M  e.  { 0 }  ->  ( M  x.  N )  e.  T
) )
2625impancom 258 . . . . . 6  |-  ( (
ph  /\  M  e.  { 0 } )  -> 
( N  e.  S  ->  ( M  x.  N
)  e.  T ) )
2712, 26jaodan 787 . . . . 5  |-  ( (
ph  /\  ( M  e.  S  \/  M  e.  { 0 } ) )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
287, 27sylan2b 285 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
29 0cnd 7783 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  CC )
3029snssd 3673 . . . . . . . . . 10  |-  ( ph  ->  { 0 }  C_  CC )
3113, 30unssd 3257 . . . . . . . . 9  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
321, 31eqsstrid 3148 . . . . . . . 8  |-  ( ph  ->  T  C_  CC )
3332sselda 3102 . . . . . . 7  |-  ( (
ph  /\  M  e.  T )  ->  M  e.  CC )
3433mul01d 8179 . . . . . 6  |-  ( (
ph  /\  M  e.  T )  ->  ( M  x.  0 )  =  0 )
3534, 20eqeltrdi 2231 . . . . 5  |-  ( (
ph  /\  M  e.  T )  ->  ( M  x.  0 )  e.  T )
36 elsni 3550 . . . . . . 7  |-  ( N  e.  { 0 }  ->  N  =  0 )
3736oveq2d 5798 . . . . . 6  |-  ( N  e.  { 0 }  ->  ( M  x.  N )  =  ( M  x.  0 ) )
3837eleq1d 2209 . . . . 5  |-  ( N  e.  { 0 }  ->  ( ( M  x.  N )  e.  T  <->  ( M  x.  0 )  e.  T
) )
3935, 38syl5ibrcom 156 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  { 0 }  ->  ( M  x.  N )  e.  T
) )
4028, 39jaod 707 . . 3  |-  ( (
ph  /\  M  e.  T )  ->  (
( N  e.  S  \/  N  e.  { 0 } )  ->  ( M  x.  N )  e.  T ) )
414, 40syl5bi 151 . 2  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  T  ->  ( M  x.  N )  e.  T ) )
4241impr 377 1  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  x.  N
)  e.  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1332    e. wcel 1481    u. cun 3074    C_ wss 3076   {csn 3532  (class class class)co 5782   CCcc 7642   0cc0 7644    x. cmul 7649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-setind 4460  ax-resscn 7736  ax-1cn 7737  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-sub 7959
This theorem is referenced by:  nn0mulcl  9037
  Copyright terms: Public domain W3C validator