ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0mulcl Unicode version

Theorem un0mulcl 9283
Description: If  S is closed under multiplication, then so is  S  u.  { 0 }. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1  |-  ( ph  ->  S  C_  CC )
un0addcl.2  |-  T  =  ( S  u.  {
0 } )
un0mulcl.3  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  S )
Assertion
Ref Expression
un0mulcl  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  x.  N
)  e.  T )

Proof of Theorem un0mulcl
StepHypRef Expression
1 un0addcl.2 . . . . 5  |-  T  =  ( S  u.  {
0 } )
21eleq2i 2263 . . . 4  |-  ( N  e.  T  <->  N  e.  ( S  u.  { 0 } ) )
3 elun 3304 . . . 4  |-  ( N  e.  ( S  u.  { 0 } )  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
42, 3bitri 184 . . 3  |-  ( N  e.  T  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
51eleq2i 2263 . . . . . 6  |-  ( M  e.  T  <->  M  e.  ( S  u.  { 0 } ) )
6 elun 3304 . . . . . 6  |-  ( M  e.  ( S  u.  { 0 } )  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
75, 6bitri 184 . . . . 5  |-  ( M  e.  T  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
8 ssun1 3326 . . . . . . . . 9  |-  S  C_  ( S  u.  { 0 } )
98, 1sseqtrri 3218 . . . . . . . 8  |-  S  C_  T
10 un0mulcl.3 . . . . . . . 8  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  S )
119, 10sselid 3181 . . . . . . 7  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  T )
1211expr 375 . . . . . 6  |-  ( (
ph  /\  M  e.  S )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
13 un0addcl.1 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  CC )
1413sselda 3183 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  S )  ->  N  e.  CC )
1514mul02d 8418 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  S )  ->  (
0  x.  N )  =  0 )
16 ssun2 3327 . . . . . . . . . . 11  |-  { 0 }  C_  ( S  u.  { 0 } )
1716, 1sseqtrri 3218 . . . . . . . . . 10  |-  { 0 }  C_  T
18 c0ex 8020 . . . . . . . . . . 11  |-  0  e.  _V
1918snss 3757 . . . . . . . . . 10  |-  ( 0  e.  T  <->  { 0 }  C_  T )
2017, 19mpbir 146 . . . . . . . . 9  |-  0  e.  T
2115, 20eqeltrdi 2287 . . . . . . . 8  |-  ( (
ph  /\  N  e.  S )  ->  (
0  x.  N )  e.  T )
22 elsni 3640 . . . . . . . . . 10  |-  ( M  e.  { 0 }  ->  M  =  0 )
2322oveq1d 5937 . . . . . . . . 9  |-  ( M  e.  { 0 }  ->  ( M  x.  N )  =  ( 0  x.  N ) )
2423eleq1d 2265 . . . . . . . 8  |-  ( M  e.  { 0 }  ->  ( ( M  x.  N )  e.  T  <->  ( 0  x.  N )  e.  T
) )
2521, 24syl5ibrcom 157 . . . . . . 7  |-  ( (
ph  /\  N  e.  S )  ->  ( M  e.  { 0 }  ->  ( M  x.  N )  e.  T
) )
2625impancom 260 . . . . . 6  |-  ( (
ph  /\  M  e.  { 0 } )  -> 
( N  e.  S  ->  ( M  x.  N
)  e.  T ) )
2712, 26jaodan 798 . . . . 5  |-  ( (
ph  /\  ( M  e.  S  \/  M  e.  { 0 } ) )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
287, 27sylan2b 287 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
29 0cnd 8019 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  CC )
3029snssd 3767 . . . . . . . . . 10  |-  ( ph  ->  { 0 }  C_  CC )
3113, 30unssd 3339 . . . . . . . . 9  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
321, 31eqsstrid 3229 . . . . . . . 8  |-  ( ph  ->  T  C_  CC )
3332sselda 3183 . . . . . . 7  |-  ( (
ph  /\  M  e.  T )  ->  M  e.  CC )
3433mul01d 8419 . . . . . 6  |-  ( (
ph  /\  M  e.  T )  ->  ( M  x.  0 )  =  0 )
3534, 20eqeltrdi 2287 . . . . 5  |-  ( (
ph  /\  M  e.  T )  ->  ( M  x.  0 )  e.  T )
36 elsni 3640 . . . . . . 7  |-  ( N  e.  { 0 }  ->  N  =  0 )
3736oveq2d 5938 . . . . . 6  |-  ( N  e.  { 0 }  ->  ( M  x.  N )  =  ( M  x.  0 ) )
3837eleq1d 2265 . . . . 5  |-  ( N  e.  { 0 }  ->  ( ( M  x.  N )  e.  T  <->  ( M  x.  0 )  e.  T
) )
3935, 38syl5ibrcom 157 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  { 0 }  ->  ( M  x.  N )  e.  T
) )
4028, 39jaod 718 . . 3  |-  ( (
ph  /\  M  e.  T )  ->  (
( N  e.  S  \/  N  e.  { 0 } )  ->  ( M  x.  N )  e.  T ) )
414, 40biimtrid 152 . 2  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  T  ->  ( M  x.  N )  e.  T ) )
4241impr 379 1  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  x.  N
)  e.  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167    u. cun 3155    C_ wss 3157   {csn 3622  (class class class)co 5922   CCcc 7877   0cc0 7879    x. cmul 7884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sub 8199
This theorem is referenced by:  nn0mulcl  9285  plymullem  14986
  Copyright terms: Public domain W3C validator