ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0mulcl Unicode version

Theorem un0mulcl 9403
Description: If  S is closed under multiplication, then so is  S  u.  { 0 }. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1  |-  ( ph  ->  S  C_  CC )
un0addcl.2  |-  T  =  ( S  u.  {
0 } )
un0mulcl.3  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  S )
Assertion
Ref Expression
un0mulcl  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  x.  N
)  e.  T )

Proof of Theorem un0mulcl
StepHypRef Expression
1 un0addcl.2 . . . . 5  |-  T  =  ( S  u.  {
0 } )
21eleq2i 2296 . . . 4  |-  ( N  e.  T  <->  N  e.  ( S  u.  { 0 } ) )
3 elun 3345 . . . 4  |-  ( N  e.  ( S  u.  { 0 } )  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
42, 3bitri 184 . . 3  |-  ( N  e.  T  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
51eleq2i 2296 . . . . . 6  |-  ( M  e.  T  <->  M  e.  ( S  u.  { 0 } ) )
6 elun 3345 . . . . . 6  |-  ( M  e.  ( S  u.  { 0 } )  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
75, 6bitri 184 . . . . 5  |-  ( M  e.  T  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
8 ssun1 3367 . . . . . . . . 9  |-  S  C_  ( S  u.  { 0 } )
98, 1sseqtrri 3259 . . . . . . . 8  |-  S  C_  T
10 un0mulcl.3 . . . . . . . 8  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  S )
119, 10sselid 3222 . . . . . . 7  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  T )
1211expr 375 . . . . . 6  |-  ( (
ph  /\  M  e.  S )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
13 un0addcl.1 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  CC )
1413sselda 3224 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  S )  ->  N  e.  CC )
1514mul02d 8538 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  S )  ->  (
0  x.  N )  =  0 )
16 ssun2 3368 . . . . . . . . . . 11  |-  { 0 }  C_  ( S  u.  { 0 } )
1716, 1sseqtrri 3259 . . . . . . . . . 10  |-  { 0 }  C_  T
18 c0ex 8140 . . . . . . . . . . 11  |-  0  e.  _V
1918snss 3803 . . . . . . . . . 10  |-  ( 0  e.  T  <->  { 0 }  C_  T )
2017, 19mpbir 146 . . . . . . . . 9  |-  0  e.  T
2115, 20eqeltrdi 2320 . . . . . . . 8  |-  ( (
ph  /\  N  e.  S )  ->  (
0  x.  N )  e.  T )
22 elsni 3684 . . . . . . . . . 10  |-  ( M  e.  { 0 }  ->  M  =  0 )
2322oveq1d 6016 . . . . . . . . 9  |-  ( M  e.  { 0 }  ->  ( M  x.  N )  =  ( 0  x.  N ) )
2423eleq1d 2298 . . . . . . . 8  |-  ( M  e.  { 0 }  ->  ( ( M  x.  N )  e.  T  <->  ( 0  x.  N )  e.  T
) )
2521, 24syl5ibrcom 157 . . . . . . 7  |-  ( (
ph  /\  N  e.  S )  ->  ( M  e.  { 0 }  ->  ( M  x.  N )  e.  T
) )
2625impancom 260 . . . . . 6  |-  ( (
ph  /\  M  e.  { 0 } )  -> 
( N  e.  S  ->  ( M  x.  N
)  e.  T ) )
2712, 26jaodan 802 . . . . 5  |-  ( (
ph  /\  ( M  e.  S  \/  M  e.  { 0 } ) )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
287, 27sylan2b 287 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
29 0cnd 8139 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  CC )
3029snssd 3813 . . . . . . . . . 10  |-  ( ph  ->  { 0 }  C_  CC )
3113, 30unssd 3380 . . . . . . . . 9  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
321, 31eqsstrid 3270 . . . . . . . 8  |-  ( ph  ->  T  C_  CC )
3332sselda 3224 . . . . . . 7  |-  ( (
ph  /\  M  e.  T )  ->  M  e.  CC )
3433mul01d 8539 . . . . . 6  |-  ( (
ph  /\  M  e.  T )  ->  ( M  x.  0 )  =  0 )
3534, 20eqeltrdi 2320 . . . . 5  |-  ( (
ph  /\  M  e.  T )  ->  ( M  x.  0 )  e.  T )
36 elsni 3684 . . . . . . 7  |-  ( N  e.  { 0 }  ->  N  =  0 )
3736oveq2d 6017 . . . . . 6  |-  ( N  e.  { 0 }  ->  ( M  x.  N )  =  ( M  x.  0 ) )
3837eleq1d 2298 . . . . 5  |-  ( N  e.  { 0 }  ->  ( ( M  x.  N )  e.  T  <->  ( M  x.  0 )  e.  T
) )
3935, 38syl5ibrcom 157 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  { 0 }  ->  ( M  x.  N )  e.  T
) )
4028, 39jaod 722 . . 3  |-  ( (
ph  /\  M  e.  T )  ->  (
( N  e.  S  \/  N  e.  { 0 } )  ->  ( M  x.  N )  e.  T ) )
414, 40biimtrid 152 . 2  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  T  ->  ( M  x.  N )  e.  T ) )
4241impr 379 1  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  x.  N
)  e.  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200    u. cun 3195    C_ wss 3197   {csn 3666  (class class class)co 6001   CCcc 7997   0cc0 7999    x. cmul 8004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319
This theorem is referenced by:  nn0mulcl  9405  plymullem  15424
  Copyright terms: Public domain W3C validator