Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > un0mulcl | Unicode version |
Description: If is closed under multiplication, then so is . (Contributed by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
un0addcl.1 | |
un0addcl.2 | |
un0mulcl.3 |
Ref | Expression |
---|---|
un0mulcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un0addcl.2 | . . . . 5 | |
2 | 1 | eleq2i 2221 | . . . 4 |
3 | elun 3244 | . . . 4 | |
4 | 2, 3 | bitri 183 | . . 3 |
5 | 1 | eleq2i 2221 | . . . . . 6 |
6 | elun 3244 | . . . . . 6 | |
7 | 5, 6 | bitri 183 | . . . . 5 |
8 | ssun1 3266 | . . . . . . . . 9 | |
9 | 8, 1 | sseqtrri 3159 | . . . . . . . 8 |
10 | un0mulcl.3 | . . . . . . . 8 | |
11 | 9, 10 | sseldi 3122 | . . . . . . 7 |
12 | 11 | expr 373 | . . . . . 6 |
13 | un0addcl.1 | . . . . . . . . . . 11 | |
14 | 13 | sselda 3124 | . . . . . . . . . 10 |
15 | 14 | mul02d 8246 | . . . . . . . . 9 |
16 | ssun2 3267 | . . . . . . . . . . 11 | |
17 | 16, 1 | sseqtrri 3159 | . . . . . . . . . 10 |
18 | c0ex 7851 | . . . . . . . . . . 11 | |
19 | 18 | snss 3681 | . . . . . . . . . 10 |
20 | 17, 19 | mpbir 145 | . . . . . . . . 9 |
21 | 15, 20 | eqeltrdi 2245 | . . . . . . . 8 |
22 | elsni 3574 | . . . . . . . . . 10 | |
23 | 22 | oveq1d 5829 | . . . . . . . . 9 |
24 | 23 | eleq1d 2223 | . . . . . . . 8 |
25 | 21, 24 | syl5ibrcom 156 | . . . . . . 7 |
26 | 25 | impancom 258 | . . . . . 6 |
27 | 12, 26 | jaodan 787 | . . . . 5 |
28 | 7, 27 | sylan2b 285 | . . . 4 |
29 | 0cnd 7850 | . . . . . . . . . . 11 | |
30 | 29 | snssd 3697 | . . . . . . . . . 10 |
31 | 13, 30 | unssd 3279 | . . . . . . . . 9 |
32 | 1, 31 | eqsstrid 3170 | . . . . . . . 8 |
33 | 32 | sselda 3124 | . . . . . . 7 |
34 | 33 | mul01d 8247 | . . . . . 6 |
35 | 34, 20 | eqeltrdi 2245 | . . . . 5 |
36 | elsni 3574 | . . . . . . 7 | |
37 | 36 | oveq2d 5830 | . . . . . 6 |
38 | 37 | eleq1d 2223 | . . . . 5 |
39 | 35, 38 | syl5ibrcom 156 | . . . 4 |
40 | 28, 39 | jaod 707 | . . 3 |
41 | 4, 40 | syl5bi 151 | . 2 |
42 | 41 | impr 377 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1332 wcel 2125 cun 3096 wss 3098 csn 3556 (class class class)co 5814 cc 7709 cc0 7711 cmul 7716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-setind 4490 ax-resscn 7803 ax-1cn 7804 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-sub 8027 |
This theorem is referenced by: nn0mulcl 9105 |
Copyright terms: Public domain | W3C validator |