Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > un0mulcl | Unicode version |
Description: If is closed under multiplication, then so is . (Contributed by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
un0addcl.1 | |
un0addcl.2 | |
un0mulcl.3 |
Ref | Expression |
---|---|
un0mulcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un0addcl.2 | . . . . 5 | |
2 | 1 | eleq2i 2237 | . . . 4 |
3 | elun 3268 | . . . 4 | |
4 | 2, 3 | bitri 183 | . . 3 |
5 | 1 | eleq2i 2237 | . . . . . 6 |
6 | elun 3268 | . . . . . 6 | |
7 | 5, 6 | bitri 183 | . . . . 5 |
8 | ssun1 3290 | . . . . . . . . 9 | |
9 | 8, 1 | sseqtrri 3182 | . . . . . . . 8 |
10 | un0mulcl.3 | . . . . . . . 8 | |
11 | 9, 10 | sselid 3145 | . . . . . . 7 |
12 | 11 | expr 373 | . . . . . 6 |
13 | un0addcl.1 | . . . . . . . . . . 11 | |
14 | 13 | sselda 3147 | . . . . . . . . . 10 |
15 | 14 | mul02d 8311 | . . . . . . . . 9 |
16 | ssun2 3291 | . . . . . . . . . . 11 | |
17 | 16, 1 | sseqtrri 3182 | . . . . . . . . . 10 |
18 | c0ex 7914 | . . . . . . . . . . 11 | |
19 | 18 | snss 3709 | . . . . . . . . . 10 |
20 | 17, 19 | mpbir 145 | . . . . . . . . 9 |
21 | 15, 20 | eqeltrdi 2261 | . . . . . . . 8 |
22 | elsni 3601 | . . . . . . . . . 10 | |
23 | 22 | oveq1d 5868 | . . . . . . . . 9 |
24 | 23 | eleq1d 2239 | . . . . . . . 8 |
25 | 21, 24 | syl5ibrcom 156 | . . . . . . 7 |
26 | 25 | impancom 258 | . . . . . 6 |
27 | 12, 26 | jaodan 792 | . . . . 5 |
28 | 7, 27 | sylan2b 285 | . . . 4 |
29 | 0cnd 7913 | . . . . . . . . . . 11 | |
30 | 29 | snssd 3725 | . . . . . . . . . 10 |
31 | 13, 30 | unssd 3303 | . . . . . . . . 9 |
32 | 1, 31 | eqsstrid 3193 | . . . . . . . 8 |
33 | 32 | sselda 3147 | . . . . . . 7 |
34 | 33 | mul01d 8312 | . . . . . 6 |
35 | 34, 20 | eqeltrdi 2261 | . . . . 5 |
36 | elsni 3601 | . . . . . . 7 | |
37 | 36 | oveq2d 5869 | . . . . . 6 |
38 | 37 | eleq1d 2239 | . . . . 5 |
39 | 35, 38 | syl5ibrcom 156 | . . . 4 |
40 | 28, 39 | jaod 712 | . . 3 |
41 | 4, 40 | syl5bi 151 | . 2 |
42 | 41 | impr 377 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 wceq 1348 wcel 2141 cun 3119 wss 3121 csn 3583 (class class class)co 5853 cc 7772 cc0 7774 cmul 7779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 |
This theorem is referenced by: nn0mulcl 9171 |
Copyright terms: Public domain | W3C validator |