ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0mulcl Unicode version

Theorem un0mulcl 9169
Description: If  S is closed under multiplication, then so is  S  u.  { 0 }. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1  |-  ( ph  ->  S  C_  CC )
un0addcl.2  |-  T  =  ( S  u.  {
0 } )
un0mulcl.3  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  S )
Assertion
Ref Expression
un0mulcl  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  x.  N
)  e.  T )

Proof of Theorem un0mulcl
StepHypRef Expression
1 un0addcl.2 . . . . 5  |-  T  =  ( S  u.  {
0 } )
21eleq2i 2237 . . . 4  |-  ( N  e.  T  <->  N  e.  ( S  u.  { 0 } ) )
3 elun 3268 . . . 4  |-  ( N  e.  ( S  u.  { 0 } )  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
42, 3bitri 183 . . 3  |-  ( N  e.  T  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
51eleq2i 2237 . . . . . 6  |-  ( M  e.  T  <->  M  e.  ( S  u.  { 0 } ) )
6 elun 3268 . . . . . 6  |-  ( M  e.  ( S  u.  { 0 } )  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
75, 6bitri 183 . . . . 5  |-  ( M  e.  T  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
8 ssun1 3290 . . . . . . . . 9  |-  S  C_  ( S  u.  { 0 } )
98, 1sseqtrri 3182 . . . . . . . 8  |-  S  C_  T
10 un0mulcl.3 . . . . . . . 8  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  S )
119, 10sselid 3145 . . . . . . 7  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  T )
1211expr 373 . . . . . 6  |-  ( (
ph  /\  M  e.  S )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
13 un0addcl.1 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  CC )
1413sselda 3147 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  S )  ->  N  e.  CC )
1514mul02d 8311 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  S )  ->  (
0  x.  N )  =  0 )
16 ssun2 3291 . . . . . . . . . . 11  |-  { 0 }  C_  ( S  u.  { 0 } )
1716, 1sseqtrri 3182 . . . . . . . . . 10  |-  { 0 }  C_  T
18 c0ex 7914 . . . . . . . . . . 11  |-  0  e.  _V
1918snss 3709 . . . . . . . . . 10  |-  ( 0  e.  T  <->  { 0 }  C_  T )
2017, 19mpbir 145 . . . . . . . . 9  |-  0  e.  T
2115, 20eqeltrdi 2261 . . . . . . . 8  |-  ( (
ph  /\  N  e.  S )  ->  (
0  x.  N )  e.  T )
22 elsni 3601 . . . . . . . . . 10  |-  ( M  e.  { 0 }  ->  M  =  0 )
2322oveq1d 5868 . . . . . . . . 9  |-  ( M  e.  { 0 }  ->  ( M  x.  N )  =  ( 0  x.  N ) )
2423eleq1d 2239 . . . . . . . 8  |-  ( M  e.  { 0 }  ->  ( ( M  x.  N )  e.  T  <->  ( 0  x.  N )  e.  T
) )
2521, 24syl5ibrcom 156 . . . . . . 7  |-  ( (
ph  /\  N  e.  S )  ->  ( M  e.  { 0 }  ->  ( M  x.  N )  e.  T
) )
2625impancom 258 . . . . . 6  |-  ( (
ph  /\  M  e.  { 0 } )  -> 
( N  e.  S  ->  ( M  x.  N
)  e.  T ) )
2712, 26jaodan 792 . . . . 5  |-  ( (
ph  /\  ( M  e.  S  \/  M  e.  { 0 } ) )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
287, 27sylan2b 285 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
29 0cnd 7913 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  CC )
3029snssd 3725 . . . . . . . . . 10  |-  ( ph  ->  { 0 }  C_  CC )
3113, 30unssd 3303 . . . . . . . . 9  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
321, 31eqsstrid 3193 . . . . . . . 8  |-  ( ph  ->  T  C_  CC )
3332sselda 3147 . . . . . . 7  |-  ( (
ph  /\  M  e.  T )  ->  M  e.  CC )
3433mul01d 8312 . . . . . 6  |-  ( (
ph  /\  M  e.  T )  ->  ( M  x.  0 )  =  0 )
3534, 20eqeltrdi 2261 . . . . 5  |-  ( (
ph  /\  M  e.  T )  ->  ( M  x.  0 )  e.  T )
36 elsni 3601 . . . . . . 7  |-  ( N  e.  { 0 }  ->  N  =  0 )
3736oveq2d 5869 . . . . . 6  |-  ( N  e.  { 0 }  ->  ( M  x.  N )  =  ( M  x.  0 ) )
3837eleq1d 2239 . . . . 5  |-  ( N  e.  { 0 }  ->  ( ( M  x.  N )  e.  T  <->  ( M  x.  0 )  e.  T
) )
3935, 38syl5ibrcom 156 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  { 0 }  ->  ( M  x.  N )  e.  T
) )
4028, 39jaod 712 . . 3  |-  ( (
ph  /\  M  e.  T )  ->  (
( N  e.  S  \/  N  e.  { 0 } )  ->  ( M  x.  N )  e.  T ) )
414, 40syl5bi 151 . 2  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  T  ->  ( M  x.  N )  e.  T ) )
4241impr 377 1  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  x.  N
)  e.  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    = wceq 1348    e. wcel 2141    u. cun 3119    C_ wss 3121   {csn 3583  (class class class)co 5853   CCcc 7772   0cc0 7774    x. cmul 7779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521  ax-resscn 7866  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sub 8092
This theorem is referenced by:  nn0mulcl  9171
  Copyright terms: Public domain W3C validator