| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > un0mulcl | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| un0addcl.1 |
|
| un0addcl.2 |
|
| un0mulcl.3 |
|
| Ref | Expression |
|---|---|
| un0mulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un0addcl.2 |
. . . . 5
| |
| 2 | 1 | eleq2i 2296 |
. . . 4
|
| 3 | elun 3345 |
. . . 4
| |
| 4 | 2, 3 | bitri 184 |
. . 3
|
| 5 | 1 | eleq2i 2296 |
. . . . . 6
|
| 6 | elun 3345 |
. . . . . 6
| |
| 7 | 5, 6 | bitri 184 |
. . . . 5
|
| 8 | ssun1 3367 |
. . . . . . . . 9
| |
| 9 | 8, 1 | sseqtrri 3259 |
. . . . . . . 8
|
| 10 | un0mulcl.3 |
. . . . . . . 8
| |
| 11 | 9, 10 | sselid 3222 |
. . . . . . 7
|
| 12 | 11 | expr 375 |
. . . . . 6
|
| 13 | un0addcl.1 |
. . . . . . . . . . 11
| |
| 14 | 13 | sselda 3224 |
. . . . . . . . . 10
|
| 15 | 14 | mul02d 8538 |
. . . . . . . . 9
|
| 16 | ssun2 3368 |
. . . . . . . . . . 11
| |
| 17 | 16, 1 | sseqtrri 3259 |
. . . . . . . . . 10
|
| 18 | c0ex 8140 |
. . . . . . . . . . 11
| |
| 19 | 18 | snss 3803 |
. . . . . . . . . 10
|
| 20 | 17, 19 | mpbir 146 |
. . . . . . . . 9
|
| 21 | 15, 20 | eqeltrdi 2320 |
. . . . . . . 8
|
| 22 | elsni 3684 |
. . . . . . . . . 10
| |
| 23 | 22 | oveq1d 6016 |
. . . . . . . . 9
|
| 24 | 23 | eleq1d 2298 |
. . . . . . . 8
|
| 25 | 21, 24 | syl5ibrcom 157 |
. . . . . . 7
|
| 26 | 25 | impancom 260 |
. . . . . 6
|
| 27 | 12, 26 | jaodan 802 |
. . . . 5
|
| 28 | 7, 27 | sylan2b 287 |
. . . 4
|
| 29 | 0cnd 8139 |
. . . . . . . . . . 11
| |
| 30 | 29 | snssd 3813 |
. . . . . . . . . 10
|
| 31 | 13, 30 | unssd 3380 |
. . . . . . . . 9
|
| 32 | 1, 31 | eqsstrid 3270 |
. . . . . . . 8
|
| 33 | 32 | sselda 3224 |
. . . . . . 7
|
| 34 | 33 | mul01d 8539 |
. . . . . 6
|
| 35 | 34, 20 | eqeltrdi 2320 |
. . . . 5
|
| 36 | elsni 3684 |
. . . . . . 7
| |
| 37 | 36 | oveq2d 6017 |
. . . . . 6
|
| 38 | 37 | eleq1d 2298 |
. . . . 5
|
| 39 | 35, 38 | syl5ibrcom 157 |
. . . 4
|
| 40 | 28, 39 | jaod 722 |
. . 3
|
| 41 | 4, 40 | biimtrid 152 |
. 2
|
| 42 | 41 | impr 379 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 |
| This theorem is referenced by: nn0mulcl 9405 plymullem 15424 |
| Copyright terms: Public domain | W3C validator |