| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unssd | GIF version | ||
| Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| unssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| unssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssd | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 2 | unssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 3 | unss 3378 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 4 | 3 | biimpi 120 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| 5 | 1, 2, 4 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∪ cun 3195 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 |
| This theorem is referenced by: tpssi 3836 casef 7251 un0addcl 9398 un0mulcl 9399 fzosplit 10371 fzouzsplit 10373 ccatrn 11139 4sqlem11 12919 4sqlem19 12927 exmidunben 12992 strleund 13131 lsptpcl 14352 lspun 14360 fsumcncntop 15235 plyf 15405 elplyr 15408 elplyd 15409 ply1term 15411 plyaddlem 15417 plymullem 15418 plycolemc 15426 plycjlemc 15428 plycj 15429 plycn 15430 dvply2g 15434 perfectlem2 15668 bj-charfun 16128 bj-omtrans 16277 |
| Copyright terms: Public domain | W3C validator |