ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssd GIF version

Theorem unssd 3353
Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
unssd.1 (𝜑𝐴𝐶)
unssd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
unssd (𝜑 → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem unssd
StepHypRef Expression
1 unssd.1 . 2 (𝜑𝐴𝐶)
2 unssd.2 . 2 (𝜑𝐵𝐶)
3 unss 3351 . . 3 ((𝐴𝐶𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
43biimpi 120 . 2 ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)
51, 2, 4syl2anc 411 1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  cun 3168  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183
This theorem is referenced by:  tpssi  3808  casef  7211  un0addcl  9358  un0mulcl  9359  fzosplit  10331  fzouzsplit  10333  ccatrn  11098  4sqlem11  12809  4sqlem19  12817  exmidunben  12882  strleund  13020  lsptpcl  14241  lspun  14249  fsumcncntop  15124  plyf  15294  elplyr  15297  elplyd  15298  ply1term  15300  plyaddlem  15306  plymullem  15307  plycolemc  15315  plycjlemc  15317  plycj  15318  plycn  15319  dvply2g  15323  perfectlem2  15557  bj-charfun  15912  bj-omtrans  16061
  Copyright terms: Public domain W3C validator