| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > unssd | GIF version | ||
| Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| unssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | 
| unssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | 
| Ref | Expression | 
|---|---|
| unssd | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 2 | unssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 3 | unss 3337 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 4 | 3 | biimpi 120 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ∪ 𝐵) ⊆ 𝐶) | 
| 5 | 1, 2, 4 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∪ cun 3155 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: tpssi 3789 casef 7154 un0addcl 9282 un0mulcl 9283 fzosplit 10253 fzouzsplit 10255 4sqlem11 12570 4sqlem19 12578 exmidunben 12643 strleund 12781 lsptpcl 13950 lspun 13958 fsumcncntop 14803 plyf 14973 elplyr 14976 elplyd 14977 ply1term 14979 plyaddlem 14985 plymullem 14986 plycolemc 14994 plycjlemc 14996 plycj 14997 plycn 14998 dvply2g 15002 perfectlem2 15236 bj-charfun 15453 bj-omtrans 15602 | 
| Copyright terms: Public domain | W3C validator |