| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unssd | GIF version | ||
| Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| unssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| unssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssd | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 2 | unssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 3 | unss 3346 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 4 | 3 | biimpi 120 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| 5 | 1, 2, 4 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∪ cun 3163 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 |
| This theorem is referenced by: tpssi 3799 casef 7189 un0addcl 9327 un0mulcl 9328 fzosplit 10299 fzouzsplit 10301 ccatrn 11063 4sqlem11 12695 4sqlem19 12703 exmidunben 12768 strleund 12906 lsptpcl 14127 lspun 14135 fsumcncntop 15010 plyf 15180 elplyr 15183 elplyd 15184 ply1term 15186 plyaddlem 15192 plymullem 15193 plycolemc 15201 plycjlemc 15203 plycj 15204 plycn 15205 dvply2g 15209 perfectlem2 15443 bj-charfun 15705 bj-omtrans 15854 |
| Copyright terms: Public domain | W3C validator |