![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unssd | GIF version |
Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
unssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
unssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
unssd | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
2 | unssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
3 | unss 3333 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
4 | 3 | biimpi 120 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
5 | 1, 2, 4 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∪ cun 3151 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 |
This theorem is referenced by: tpssi 3785 casef 7147 un0addcl 9273 un0mulcl 9274 fzosplit 10244 fzouzsplit 10246 4sqlem11 12539 4sqlem19 12547 exmidunben 12583 strleund 12721 lsptpcl 13890 lspun 13898 fsumcncntop 14724 plyf 14883 elplyr 14886 elplyd 14887 ply1term 14889 plyaddlem 14895 plymullem 14896 bj-charfun 15299 bj-omtrans 15448 |
Copyright terms: Public domain | W3C validator |