| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unssd | GIF version | ||
| Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| unssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| unssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssd | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 2 | unssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 3 | unss 3351 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 4 | 3 | biimpi 120 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| 5 | 1, 2, 4 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∪ cun 3168 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 |
| This theorem is referenced by: tpssi 3808 casef 7211 un0addcl 9358 un0mulcl 9359 fzosplit 10331 fzouzsplit 10333 ccatrn 11098 4sqlem11 12809 4sqlem19 12817 exmidunben 12882 strleund 13020 lsptpcl 14241 lspun 14249 fsumcncntop 15124 plyf 15294 elplyr 15297 elplyd 15298 ply1term 15300 plyaddlem 15306 plymullem 15307 plycolemc 15315 plycjlemc 15317 plycj 15318 plycn 15319 dvply2g 15323 perfectlem2 15557 bj-charfun 15912 bj-omtrans 16061 |
| Copyright terms: Public domain | W3C validator |