| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > un0addcl | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| un0addcl.1 |
|
| un0addcl.2 |
|
| un0addcl.3 |
|
| Ref | Expression |
|---|---|
| un0addcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un0addcl.2 |
. . . . 5
| |
| 2 | 1 | eleq2i 2263 |
. . . 4
|
| 3 | elun 3305 |
. . . 4
| |
| 4 | 2, 3 | bitri 184 |
. . 3
|
| 5 | 1 | eleq2i 2263 |
. . . . . 6
|
| 6 | elun 3305 |
. . . . . 6
| |
| 7 | 5, 6 | bitri 184 |
. . . . 5
|
| 8 | ssun1 3327 |
. . . . . . . . 9
| |
| 9 | 8, 1 | sseqtrri 3219 |
. . . . . . . 8
|
| 10 | un0addcl.3 |
. . . . . . . 8
| |
| 11 | 9, 10 | sselid 3182 |
. . . . . . 7
|
| 12 | 11 | expr 375 |
. . . . . 6
|
| 13 | un0addcl.1 |
. . . . . . . . . . 11
| |
| 14 | 13 | sselda 3184 |
. . . . . . . . . 10
|
| 15 | 14 | addlidd 8193 |
. . . . . . . . 9
|
| 16 | 9 | a1i 9 |
. . . . . . . . . 10
|
| 17 | 16 | sselda 3184 |
. . . . . . . . 9
|
| 18 | 15, 17 | eqeltrd 2273 |
. . . . . . . 8
|
| 19 | elsni 3641 |
. . . . . . . . . 10
| |
| 20 | 19 | oveq1d 5940 |
. . . . . . . . 9
|
| 21 | 20 | eleq1d 2265 |
. . . . . . . 8
|
| 22 | 18, 21 | syl5ibrcom 157 |
. . . . . . 7
|
| 23 | 22 | impancom 260 |
. . . . . 6
|
| 24 | 12, 23 | jaodan 798 |
. . . . 5
|
| 25 | 7, 24 | sylan2b 287 |
. . . 4
|
| 26 | 0cnd 8036 |
. . . . . . . . . . 11
| |
| 27 | 26 | snssd 3768 |
. . . . . . . . . 10
|
| 28 | 13, 27 | unssd 3340 |
. . . . . . . . 9
|
| 29 | 1, 28 | eqsstrid 3230 |
. . . . . . . 8
|
| 30 | 29 | sselda 3184 |
. . . . . . 7
|
| 31 | 30 | addridd 8192 |
. . . . . 6
|
| 32 | simpr 110 |
. . . . . 6
| |
| 33 | 31, 32 | eqeltrd 2273 |
. . . . 5
|
| 34 | elsni 3641 |
. . . . . . 7
| |
| 35 | 34 | oveq2d 5941 |
. . . . . 6
|
| 36 | 35 | eleq1d 2265 |
. . . . 5
|
| 37 | 33, 36 | syl5ibrcom 157 |
. . . 4
|
| 38 | 25, 37 | jaod 718 |
. . 3
|
| 39 | 4, 38 | biimtrid 152 |
. 2
|
| 40 | 39 | impr 379 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-addcom 7996 ax-i2m1 8001 ax-0id 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: nn0addcl 9301 plyaddlem 15069 plymullem 15070 |
| Copyright terms: Public domain | W3C validator |