Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > un0addcl | Unicode version |
Description: If is closed under addition, then so is . (Contributed by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
un0addcl.1 | |
un0addcl.2 | |
un0addcl.3 |
Ref | Expression |
---|---|
un0addcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un0addcl.2 | . . . . 5 | |
2 | 1 | eleq2i 2233 | . . . 4 |
3 | elun 3263 | . . . 4 | |
4 | 2, 3 | bitri 183 | . . 3 |
5 | 1 | eleq2i 2233 | . . . . . 6 |
6 | elun 3263 | . . . . . 6 | |
7 | 5, 6 | bitri 183 | . . . . 5 |
8 | ssun1 3285 | . . . . . . . . 9 | |
9 | 8, 1 | sseqtrri 3177 | . . . . . . . 8 |
10 | un0addcl.3 | . . . . . . . 8 | |
11 | 9, 10 | sselid 3140 | . . . . . . 7 |
12 | 11 | expr 373 | . . . . . 6 |
13 | un0addcl.1 | . . . . . . . . . . 11 | |
14 | 13 | sselda 3142 | . . . . . . . . . 10 |
15 | 14 | addid2d 8048 | . . . . . . . . 9 |
16 | 9 | a1i 9 | . . . . . . . . . 10 |
17 | 16 | sselda 3142 | . . . . . . . . 9 |
18 | 15, 17 | eqeltrd 2243 | . . . . . . . 8 |
19 | elsni 3594 | . . . . . . . . . 10 | |
20 | 19 | oveq1d 5857 | . . . . . . . . 9 |
21 | 20 | eleq1d 2235 | . . . . . . . 8 |
22 | 18, 21 | syl5ibrcom 156 | . . . . . . 7 |
23 | 22 | impancom 258 | . . . . . 6 |
24 | 12, 23 | jaodan 787 | . . . . 5 |
25 | 7, 24 | sylan2b 285 | . . . 4 |
26 | 0cnd 7892 | . . . . . . . . . . 11 | |
27 | 26 | snssd 3718 | . . . . . . . . . 10 |
28 | 13, 27 | unssd 3298 | . . . . . . . . 9 |
29 | 1, 28 | eqsstrid 3188 | . . . . . . . 8 |
30 | 29 | sselda 3142 | . . . . . . 7 |
31 | 30 | addid1d 8047 | . . . . . 6 |
32 | simpr 109 | . . . . . 6 | |
33 | 31, 32 | eqeltrd 2243 | . . . . 5 |
34 | elsni 3594 | . . . . . . 7 | |
35 | 34 | oveq2d 5858 | . . . . . 6 |
36 | 35 | eleq1d 2235 | . . . . 5 |
37 | 33, 36 | syl5ibrcom 156 | . . . 4 |
38 | 25, 37 | jaod 707 | . . 3 |
39 | 4, 38 | syl5bi 151 | . 2 |
40 | 39 | impr 377 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1343 wcel 2136 cun 3114 wss 3116 csn 3576 (class class class)co 5842 cc 7751 cc0 7753 caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-addcom 7853 ax-i2m1 7858 ax-0id 7861 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: nn0addcl 9149 |
Copyright terms: Public domain | W3C validator |