ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0addcl Unicode version

Theorem un0addcl 9273
Description: If  S is closed under addition, then so is  S  u.  { 0 }. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1  |-  ( ph  ->  S  C_  CC )
un0addcl.2  |-  T  =  ( S  u.  {
0 } )
un0addcl.3  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  +  N
)  e.  S )
Assertion
Ref Expression
un0addcl  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  +  N
)  e.  T )

Proof of Theorem un0addcl
StepHypRef Expression
1 un0addcl.2 . . . . 5  |-  T  =  ( S  u.  {
0 } )
21eleq2i 2260 . . . 4  |-  ( N  e.  T  <->  N  e.  ( S  u.  { 0 } ) )
3 elun 3300 . . . 4  |-  ( N  e.  ( S  u.  { 0 } )  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
42, 3bitri 184 . . 3  |-  ( N  e.  T  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
51eleq2i 2260 . . . . . 6  |-  ( M  e.  T  <->  M  e.  ( S  u.  { 0 } ) )
6 elun 3300 . . . . . 6  |-  ( M  e.  ( S  u.  { 0 } )  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
75, 6bitri 184 . . . . 5  |-  ( M  e.  T  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
8 ssun1 3322 . . . . . . . . 9  |-  S  C_  ( S  u.  { 0 } )
98, 1sseqtrri 3214 . . . . . . . 8  |-  S  C_  T
10 un0addcl.3 . . . . . . . 8  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  +  N
)  e.  S )
119, 10sselid 3177 . . . . . . 7  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  +  N
)  e.  T )
1211expr 375 . . . . . 6  |-  ( (
ph  /\  M  e.  S )  ->  ( N  e.  S  ->  ( M  +  N )  e.  T ) )
13 un0addcl.1 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  CC )
1413sselda 3179 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  S )  ->  N  e.  CC )
1514addlidd 8169 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  S )  ->  (
0  +  N )  =  N )
169a1i 9 . . . . . . . . . 10  |-  ( ph  ->  S  C_  T )
1716sselda 3179 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  S )  ->  N  e.  T )
1815, 17eqeltrd 2270 . . . . . . . 8  |-  ( (
ph  /\  N  e.  S )  ->  (
0  +  N )  e.  T )
19 elsni 3636 . . . . . . . . . 10  |-  ( M  e.  { 0 }  ->  M  =  0 )
2019oveq1d 5933 . . . . . . . . 9  |-  ( M  e.  { 0 }  ->  ( M  +  N )  =  ( 0  +  N ) )
2120eleq1d 2262 . . . . . . . 8  |-  ( M  e.  { 0 }  ->  ( ( M  +  N )  e.  T  <->  ( 0  +  N )  e.  T
) )
2218, 21syl5ibrcom 157 . . . . . . 7  |-  ( (
ph  /\  N  e.  S )  ->  ( M  e.  { 0 }  ->  ( M  +  N )  e.  T
) )
2322impancom 260 . . . . . 6  |-  ( (
ph  /\  M  e.  { 0 } )  -> 
( N  e.  S  ->  ( M  +  N
)  e.  T ) )
2412, 23jaodan 798 . . . . 5  |-  ( (
ph  /\  ( M  e.  S  \/  M  e.  { 0 } ) )  ->  ( N  e.  S  ->  ( M  +  N )  e.  T ) )
257, 24sylan2b 287 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  S  ->  ( M  +  N )  e.  T ) )
26 0cnd 8012 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  CC )
2726snssd 3763 . . . . . . . . . 10  |-  ( ph  ->  { 0 }  C_  CC )
2813, 27unssd 3335 . . . . . . . . 9  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
291, 28eqsstrid 3225 . . . . . . . 8  |-  ( ph  ->  T  C_  CC )
3029sselda 3179 . . . . . . 7  |-  ( (
ph  /\  M  e.  T )  ->  M  e.  CC )
3130addridd 8168 . . . . . 6  |-  ( (
ph  /\  M  e.  T )  ->  ( M  +  0 )  =  M )
32 simpr 110 . . . . . 6  |-  ( (
ph  /\  M  e.  T )  ->  M  e.  T )
3331, 32eqeltrd 2270 . . . . 5  |-  ( (
ph  /\  M  e.  T )  ->  ( M  +  0 )  e.  T )
34 elsni 3636 . . . . . . 7  |-  ( N  e.  { 0 }  ->  N  =  0 )
3534oveq2d 5934 . . . . . 6  |-  ( N  e.  { 0 }  ->  ( M  +  N )  =  ( M  +  0 ) )
3635eleq1d 2262 . . . . 5  |-  ( N  e.  { 0 }  ->  ( ( M  +  N )  e.  T  <->  ( M  + 
0 )  e.  T
) )
3733, 36syl5ibrcom 157 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  { 0 }  ->  ( M  +  N )  e.  T
) )
3825, 37jaod 718 . . 3  |-  ( (
ph  /\  M  e.  T )  ->  (
( N  e.  S  \/  N  e.  { 0 } )  ->  ( M  +  N )  e.  T ) )
394, 38biimtrid 152 . 2  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  T  ->  ( M  +  N )  e.  T ) )
4039impr 379 1  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  +  N
)  e.  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164    u. cun 3151    C_ wss 3153   {csn 3618  (class class class)co 5918   CCcc 7870   0cc0 7872    + caddc 7875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-mulcl 7970  ax-addcom 7972  ax-i2m1 7977  ax-0id 7980
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by:  nn0addcl  9275  plyaddlem  14895  plymullem  14896
  Copyright terms: Public domain W3C validator