| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > un0addcl | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| un0addcl.1 |
|
| un0addcl.2 |
|
| un0addcl.3 |
|
| Ref | Expression |
|---|---|
| un0addcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un0addcl.2 |
. . . . 5
| |
| 2 | 1 | eleq2i 2274 |
. . . 4
|
| 3 | elun 3322 |
. . . 4
| |
| 4 | 2, 3 | bitri 184 |
. . 3
|
| 5 | 1 | eleq2i 2274 |
. . . . . 6
|
| 6 | elun 3322 |
. . . . . 6
| |
| 7 | 5, 6 | bitri 184 |
. . . . 5
|
| 8 | ssun1 3344 |
. . . . . . . . 9
| |
| 9 | 8, 1 | sseqtrri 3236 |
. . . . . . . 8
|
| 10 | un0addcl.3 |
. . . . . . . 8
| |
| 11 | 9, 10 | sselid 3199 |
. . . . . . 7
|
| 12 | 11 | expr 375 |
. . . . . 6
|
| 13 | un0addcl.1 |
. . . . . . . . . . 11
| |
| 14 | 13 | sselda 3201 |
. . . . . . . . . 10
|
| 15 | 14 | addlidd 8257 |
. . . . . . . . 9
|
| 16 | 9 | a1i 9 |
. . . . . . . . . 10
|
| 17 | 16 | sselda 3201 |
. . . . . . . . 9
|
| 18 | 15, 17 | eqeltrd 2284 |
. . . . . . . 8
|
| 19 | elsni 3661 |
. . . . . . . . . 10
| |
| 20 | 19 | oveq1d 5982 |
. . . . . . . . 9
|
| 21 | 20 | eleq1d 2276 |
. . . . . . . 8
|
| 22 | 18, 21 | syl5ibrcom 157 |
. . . . . . 7
|
| 23 | 22 | impancom 260 |
. . . . . 6
|
| 24 | 12, 23 | jaodan 799 |
. . . . 5
|
| 25 | 7, 24 | sylan2b 287 |
. . . 4
|
| 26 | 0cnd 8100 |
. . . . . . . . . . 11
| |
| 27 | 26 | snssd 3789 |
. . . . . . . . . 10
|
| 28 | 13, 27 | unssd 3357 |
. . . . . . . . 9
|
| 29 | 1, 28 | eqsstrid 3247 |
. . . . . . . 8
|
| 30 | 29 | sselda 3201 |
. . . . . . 7
|
| 31 | 30 | addridd 8256 |
. . . . . 6
|
| 32 | simpr 110 |
. . . . . 6
| |
| 33 | 31, 32 | eqeltrd 2284 |
. . . . 5
|
| 34 | elsni 3661 |
. . . . . . 7
| |
| 35 | 34 | oveq2d 5983 |
. . . . . 6
|
| 36 | 35 | eleq1d 2276 |
. . . . 5
|
| 37 | 33, 36 | syl5ibrcom 157 |
. . . 4
|
| 38 | 25, 37 | jaod 719 |
. . 3
|
| 39 | 4, 38 | biimtrid 152 |
. 2
|
| 40 | 39 | impr 379 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-mulcl 8058 ax-addcom 8060 ax-i2m1 8065 ax-0id 8068 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: nn0addcl 9365 plyaddlem 15336 plymullem 15337 |
| Copyright terms: Public domain | W3C validator |