ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0addcl Unicode version

Theorem un0addcl 9328
Description: If  S is closed under addition, then so is  S  u.  { 0 }. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1  |-  ( ph  ->  S  C_  CC )
un0addcl.2  |-  T  =  ( S  u.  {
0 } )
un0addcl.3  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  +  N
)  e.  S )
Assertion
Ref Expression
un0addcl  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  +  N
)  e.  T )

Proof of Theorem un0addcl
StepHypRef Expression
1 un0addcl.2 . . . . 5  |-  T  =  ( S  u.  {
0 } )
21eleq2i 2272 . . . 4  |-  ( N  e.  T  <->  N  e.  ( S  u.  { 0 } ) )
3 elun 3314 . . . 4  |-  ( N  e.  ( S  u.  { 0 } )  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
42, 3bitri 184 . . 3  |-  ( N  e.  T  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
51eleq2i 2272 . . . . . 6  |-  ( M  e.  T  <->  M  e.  ( S  u.  { 0 } ) )
6 elun 3314 . . . . . 6  |-  ( M  e.  ( S  u.  { 0 } )  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
75, 6bitri 184 . . . . 5  |-  ( M  e.  T  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
8 ssun1 3336 . . . . . . . . 9  |-  S  C_  ( S  u.  { 0 } )
98, 1sseqtrri 3228 . . . . . . . 8  |-  S  C_  T
10 un0addcl.3 . . . . . . . 8  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  +  N
)  e.  S )
119, 10sselid 3191 . . . . . . 7  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  +  N
)  e.  T )
1211expr 375 . . . . . 6  |-  ( (
ph  /\  M  e.  S )  ->  ( N  e.  S  ->  ( M  +  N )  e.  T ) )
13 un0addcl.1 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  CC )
1413sselda 3193 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  S )  ->  N  e.  CC )
1514addlidd 8222 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  S )  ->  (
0  +  N )  =  N )
169a1i 9 . . . . . . . . . 10  |-  ( ph  ->  S  C_  T )
1716sselda 3193 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  S )  ->  N  e.  T )
1815, 17eqeltrd 2282 . . . . . . . 8  |-  ( (
ph  /\  N  e.  S )  ->  (
0  +  N )  e.  T )
19 elsni 3651 . . . . . . . . . 10  |-  ( M  e.  { 0 }  ->  M  =  0 )
2019oveq1d 5959 . . . . . . . . 9  |-  ( M  e.  { 0 }  ->  ( M  +  N )  =  ( 0  +  N ) )
2120eleq1d 2274 . . . . . . . 8  |-  ( M  e.  { 0 }  ->  ( ( M  +  N )  e.  T  <->  ( 0  +  N )  e.  T
) )
2218, 21syl5ibrcom 157 . . . . . . 7  |-  ( (
ph  /\  N  e.  S )  ->  ( M  e.  { 0 }  ->  ( M  +  N )  e.  T
) )
2322impancom 260 . . . . . 6  |-  ( (
ph  /\  M  e.  { 0 } )  -> 
( N  e.  S  ->  ( M  +  N
)  e.  T ) )
2412, 23jaodan 799 . . . . 5  |-  ( (
ph  /\  ( M  e.  S  \/  M  e.  { 0 } ) )  ->  ( N  e.  S  ->  ( M  +  N )  e.  T ) )
257, 24sylan2b 287 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  S  ->  ( M  +  N )  e.  T ) )
26 0cnd 8065 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  CC )
2726snssd 3778 . . . . . . . . . 10  |-  ( ph  ->  { 0 }  C_  CC )
2813, 27unssd 3349 . . . . . . . . 9  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
291, 28eqsstrid 3239 . . . . . . . 8  |-  ( ph  ->  T  C_  CC )
3029sselda 3193 . . . . . . 7  |-  ( (
ph  /\  M  e.  T )  ->  M  e.  CC )
3130addridd 8221 . . . . . 6  |-  ( (
ph  /\  M  e.  T )  ->  ( M  +  0 )  =  M )
32 simpr 110 . . . . . 6  |-  ( (
ph  /\  M  e.  T )  ->  M  e.  T )
3331, 32eqeltrd 2282 . . . . 5  |-  ( (
ph  /\  M  e.  T )  ->  ( M  +  0 )  e.  T )
34 elsni 3651 . . . . . . 7  |-  ( N  e.  { 0 }  ->  N  =  0 )
3534oveq2d 5960 . . . . . 6  |-  ( N  e.  { 0 }  ->  ( M  +  N )  =  ( M  +  0 ) )
3635eleq1d 2274 . . . . 5  |-  ( N  e.  { 0 }  ->  ( ( M  +  N )  e.  T  <->  ( M  + 
0 )  e.  T
) )
3733, 36syl5ibrcom 157 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  { 0 }  ->  ( M  +  N )  e.  T
) )
3825, 37jaod 719 . . 3  |-  ( (
ph  /\  M  e.  T )  ->  (
( N  e.  S  \/  N  e.  { 0 } )  ->  ( M  +  N )  e.  T ) )
394, 38biimtrid 152 . 2  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  T  ->  ( M  +  N )  e.  T ) )
4039impr 379 1  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  +  N
)  e.  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2176    u. cun 3164    C_ wss 3166   {csn 3633  (class class class)co 5944   CCcc 7923   0cc0 7925    + caddc 7928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-1cn 8018  ax-icn 8020  ax-addcl 8021  ax-mulcl 8023  ax-addcom 8025  ax-i2m1 8030  ax-0id 8033
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947
This theorem is referenced by:  nn0addcl  9330  plyaddlem  15221  plymullem  15222
  Copyright terms: Public domain W3C validator